Quasiparticles in Leptogenesis

Clemens Kießig

Max-Planck-Institut für Physik München (Werner-Heisenberg-Institut)

based on work with Michael Plümacher

Beyond 2010 - February 1, 2010

Introduction and Motivation	Leptogenesis	Thermal corrections	Conclusions
		000	
		000000	

Outline

2 Leptogenesis

3 Thermal corrections

- Overview
- May you put in thermal masses "by hand"?
- Fermionic quasiparticles

Onclusions

Matter-Antimatter Asymmetry

- The universe today consists of matter and of practically no antimatter. Naively expected relic baryon density (annihilation into pions): $\frac{n_B}{n_\gamma} = \frac{n_{\bar{B}}}{n_\gamma} \sim 10^{-20}$
- Observed baryon asymmetry: $\eta_{\rm B} = \frac{n_{\rm B} n_{\rm B}}{n_{\gamma}} \sim 10^{-9}$ \Rightarrow Huge number! Explanation?
- A matter-antimatter asymmetry can be dynamically generated if Sakharov's conditions [1967] are fulfilled:
 - baryon number violation
 - C and CP violation (reaction rates need to be different than for the charge conjugated processes)
 - deviation from thermal equilibrium (otherwise asymmetry washed out)
- Different Baryogenesis theories
- Leptogenesis stems from a different problem in particle physics: The smallness of neutrino masses.

Quasiparticles in Leptogenesis

Clemens Kießig

3

The unbearable lightness of neutrino masses

- Compared to all other fermions, neutrinos are extremely light \Rightarrow Yukawa couplings of $\sim 10^{-13}$ necessary for Dirac masses (cf. $Y_e \sim 10^{-6}$)
- Possible solution: Add three right-handed neutrinos N to the SM with Majorana mass terms at the GUT scale ($\sim 10^{16}$ GeV), assume Yukawa couplings h similar to the other fermions

$$\delta \mathcal{L} = \bar{N}_i i \partial_\mu \gamma^\mu N_i - h_{i\alpha} \bar{N}_i \phi^\dagger \ell_\alpha - \frac{1}{2} M_i \bar{N}_i N_i^c + h.c.$$

- Diagonalizing the mass matrix leads to six mass eigenstates: three heavy ones $(\sim M_i)$ and three light ones $(m_{ij}^{\nu} = -v^2(h^T M^{-1}h)_{ij}) \Rightarrow$ See-saw mechanism
- The heavy Ns violate lepton number, but did we not want a baryon asymmetry?

Thermal corrections

Sphalerons: A black box

['t Hooft '76], [Rubakov, Shaposhnikov '85]

- Baryon (B) and lepton (L) numbers are not conserved in the SM due to a U(1) triangle anomaly
- At high T ($\sim T_{EW} \sim 100$ GeV), thermal transitions between different vacua with different B and L numbers are possible: Sphalerons
- ΔB = ΔL = 3 for sphaleron processes, but B − L conserved ⇒ We need to violate B − L, otherwise sphaleron processes will wash out any existing asymmetry

N decays

The lightest (heavy) Majorana neutrino N_1 is an ideal candidate for baryogenesis:

- It decays out of equilibrium (no SM gauge interactions)
- It violates L and B L $(N \rightarrow \ell \phi^{\dagger}, \overline{\ell} \phi)$
- Sphaleron processes convert lepton asymmetry partially to baryon asymmetry
- The generated baryon asymmetry is proportional to the CP asymmetry in N_1 -decays: interference between tree level and one-loop diagrams:

• rough estimate for ϵ_1 in terms of neutrino masses:

$$\epsilon_1 \simeq -rac{3}{16\pi} rac{M_1}{(hh^\dagger)_{11} v^2} {
m Im}(h^* m_
u h^\dagger)_{11} \simeq -rac{3}{16\pi} rac{M_1 m_3}{v^2} \sim 0.1 rac{M_1}{M_3}$$

 ${ullet}$ For hierarchies like the quark sector $(\frac{M_1}{M_3}\sim 10^{-5}) \Rightarrow \epsilon_1\sim 10^{-6}$

Baryon asymmetry

- Baryon asymmetry: $\eta_B = \frac{n_{\rm B} n_{\rm B}}{n_{\gamma}} = -d \epsilon_1 \kappa \sim 10^{-9}$, with dilution factor $d \sim 0.01$ (increase of photon number density), efficiency factor κ typically ~ 0.1 (Boltzmann equations); baryogenesis temperature $T_B \sim M_1 \sim 10^{10}$ GeV.
- Two parameters govern LG (neglecting flavor effects): M_1 and 'effective' ν mass $\tilde{m}_1 = \frac{(hh^{\dagger})_{11}\nu^2}{M_1}$
- N_1 decays in (out of) equilibrium if $\Gamma_1 > H$ ($\Gamma_1 < H$ with H Hubble parameter) $\Rightarrow \tilde{m}_1 > m_* \simeq 10^{-3} \text{ eV}$ ($\tilde{m}_1 < m_* \simeq 10^{-3} \text{ eV}$)
- Numerical evaluation of Boltzmann equations shows: LG also possible close to equilibrium $(\tilde{m}_1 > m_*)$
- lower bound on reheating temperature $T_R > 2 \times 10^9 \text{ GeV}$

Thermal corrections

Thermal field theory

• At zero temperature vacuum expectation values of operators:

$$\langle A
angle = \langle 0 | A | 0
angle$$

• Two-point Green's function:

$$i\Delta(x-y) = \langle 0|T\{\phi(x)\phi(y)\}|0\rangle$$

• At finite temperature ensemble weighted expectation values:

$$\langle A \rangle_{\beta} = Tr(\rho A) = \frac{1}{Tr(e^{-\beta H})} \Sigma_n \langle n|A|n \rangle e^{-\beta E_n}$$

Two-point function:

$$i\Delta^{T>0}(x-y) = \frac{1}{Tr(e^{-\beta H})} \Sigma_n \langle n | T\{\phi_x \phi_y\} | n \rangle e^{-\beta E_n}$$

Quasiparticles in Leptogenesis

Thermal corrections ○●○ ○○○○ ○○○○○

Thermal propagators

- Using bare thermal propagators can give IR singularities and gauge dependent results
- cure: Hard Thermal Loop (HTL) resummation technique
- For soft momenta $K \ll T$, resummed propagators have to be used:

Thermal corrections to leptogenesis

Thermal corrections have been investigated [Giudice, Notari, Raidal, Riotto, Strumia '03]

- Renormalization of couplings at $\sim 2\pi T$, most importantly the top Yukawa and neutrino masses
- thermal corrections to decay and scattering processes, using HTL resummed propagators and thermal masses in the kinematics of the final states:
 - decays $N \to HL$
 - $\Delta L = 2$ scatterings $LH \rightarrow \overline{LH}$ and $LL \rightarrow \overline{HH}$, mediated by N_1 . The N_1 on-shell contributions are taken into account by decays and inverse decays and have to be subtracted
 - $\Delta L = 1$ scatterings involving the top quark and gauge bosons
- thermal corrections to the CP asymmetry ϵ_{N_1}

Thermal masses by hand

- To understand thermal masses, consider the decay rate $N \rightarrow LH$.
- put in thermal masses "by hand":

$$\gamma_D^{eq} = \int d\tilde{p}_N d\tilde{p}_L d\tilde{p}_H (2\pi)^4 \delta^4 (P_N - P_L - P_H) |\mathcal{M}|^2 f_N (1 + f_H) (1 - f_L),$$

where $d\tilde{p}_i = \frac{p_i^3}{(2pi)^3 2E_i}$

- Assume either
 - Fermi- and Bose-statistics
 - or Maxwell-Boltzmann statistics \Rightarrow enhancement and blocking factors $(1 + f_H)(1 f_L)$ become 1. Deviation typically $\mathcal{O}(10\%)$.

May you put in thermal masses by hand?

- What is the consistent TFT-treatment of thermal masses?
- Calculate the *N* self energy at finite T and use TFT cutting rules [Weldon '83, Kobes and Semenoff '86]:

Thermal corrections

approximate HTL-propagators

- $D^*(P_H) = \frac{1}{P_H^2 m_H^2(T)}$ HTL-resummed Higgs propagator, $\frac{m_H^2(T)}{T^2} = \frac{3}{16}g_2^2 + \frac{1}{16}g_Y^2 + \frac{1}{4}y_t^2 + \frac{1}{2}\lambda,$
- For demonstration purposes, do not take full HTL fermion propagator, but approximation $S^*(P_L) = \frac{P_L}{P_L^2 m_L^2(T)}$ (see next chapter), $\frac{m_L(T)^2}{T^2} = \frac{3}{32}g_2^2 + \frac{1}{32}g_Y^2$ is given by gauge interations

ヨト ・ヨトー

Interpretation of the discontinuity

$$tr(\mathcal{P}_{N}Im\Sigma) = -\int d\tilde{p}_{L}d\tilde{p}_{H}(2\pi)^{4}\delta^{4}(P_{N}-P_{H}(T)-P_{L}(T))$$
$$\times |\mathcal{M}|^{2}(1-f_{L}+f_{H})$$

• $1 - f_L + f_H = (1 - f_L)(1 + f_H) + f_L f_H$ includes both $N \rightarrow LH$ and $LH \rightarrow N$

•
$$\Gamma = -\frac{1}{2p_N^0} tr(\mathcal{P}_N Im \Sigma), \ \Gamma_D = (1 - f_N(p_N^0))\Gamma, \ \Gamma_{ID} = f_N(p_N^0)\Gamma$$

- result equals "per hand" treatment, propagators same structure as at T = 0, but
 - Full HTL Lepton propagator has a different structure \rightarrow quasi-particle structure
 - Fermi- and Bose distribution functions always appear in TFT calculations, even without thermal masses ⇒
 Maxwell-Boltzmann appears not consistent

Introduction and Motivation	Leptogenesis	Thermal corrections ○○○ ○○○○○ ○○○○○○	Conclusions
decay rate γ_D			

• $M_1 = 10^{10} \,\, {
m GeV}$, ${ ilde m}_1 = 0.06 \,\, {
m eV} \,\, (\Delta m^2_{atm})$

• Cutoff at $M_N = m_H(T)$, deviation of up to 20 %.

- Due to its fermionic structure, the lepton propagator cannot be resummed like a scalar propagator, but yields a more complicated result.
- In the helicity eigenstate representation, it reads:

$$S^*(K) = rac{1}{2D_+(K)}(\gamma_0 - \hat{\mathbf{k}} \cdot \gamma) + rac{1}{2D_-(K)}(\gamma_0 + \hat{\mathbf{k}} \cdot \gamma),$$

where

$$D_{\pm}(K) = -k_0 \pm k + \frac{m_L(T)^2}{k} \left(\pm 1 - \frac{\pm k_0 - k}{2k} \ln \frac{k_0 + k}{k_0 - k} \right)$$

• The thermal lepton mass is given by gauge interactions: $\frac{m_L(T)^2}{T^2} = \frac{3}{32}g_2^2 + \frac{1}{32}g_Y^2$

Fermion dispersion relations

The propagator has two poles at $D_{\pm}(\omega_{\pm})=0$ corresponding to two dispersion relations

$$\omega_{\pm} = \pm k \frac{W_{-1,0}(-\exp(-2\frac{k^2}{m_L^2} - 1)) - 1}{W_{-1,0}(-\exp(-2\frac{k^2}{m_L^2} - 1)) + 1}$$
(1)

where W(s) = x is the Lambert W function, i.e. the inverse of $s = xe^x$, and $W_0 \ge -1$ and $W_{-1} \le -1$ are its two real branches. The ω_- -branch is the so-called plasmino.

Quasiparticle masses revisited

• For
$$k \to \infty$$
: $\omega_+(k) \to \sqrt{k^2 + 2m_L^2}$ $\omega_-(k) \to k$

• Using ω_{-} and ω_{+} corresponds to different thermal masses (ranging from 0 to $\sqrt{2} m_{L}$) \Rightarrow correction, threshold $M_{H} = m_{H} + m_{L}$ relaxed.

Decay rate for two lepton modes

• Calculating Γ_\pm using the optical theorem, one gets as matrix element

$$\mathcal{M}_{\pm}|^{2} = g^{2} \frac{\omega_{\pm}^{2} - k^{2}}{2m_{L}(T)^{2}} \left(\omega_{\pm} p_{0} \mp \omega_{\pm} \eta \right),$$

where $\eta = \mathbf{k} \cdot \mathbf{p}/kp$ is the angle between neutrino and lepton.

• For comparison the one-mode approximation

$$|\mathcal{M}|^2 = g^2 K_{\mu} P^{\mu} = \frac{1}{2} \left(M_N^2 - m_L(T)^2 + m_H(T)^2 \right)$$

Thermal corrections

Comparing with one mode approximation

- decay density for the \pm modes and the one-mode approximation, $M_N = 10^{10} \text{GeV}, \ \tilde{m}_1 = 0.06 \text{eV}.$
- Thresholds are at $M_N = m_H + \sqrt{2}m_L$, $M_N = m_H$ and $M_N = m_H + m_L$.
- The deviation reaches one order of magnitude in the interesting temperature regime $T \sim M$.

What needs to be done for a self-consistent implementation in the dynamics?

- When $M_N \leq m_H(T)$, the decay $H \rightarrow NL$ opens up \Rightarrow Calculate $\gamma_{H\pm}$.
- Calculate the effect on the CP-asymmetries $\epsilon_N(T)$, $\epsilon_H(T)$.
- Minimal self-consistent treatment without scatterings and gauge interactions, gives an idea of the effect.

Conclusions

• Summary:

- Putting in thermal masses "by hand" is a justifiable approximation for the N decay density $\gamma_{\rm D}$ to some accuracy.
- In the TFT treatment, Fermi-Bose distribution functions appear at the same order as thermal masses \rightarrow Maxwell-Boltzmann not consistent.
- Two lepton modes give corrections of one order of magnitude in the interesting temperature regime $T \sim M_N$.
- Future work:
 - Determine the dynamics of the minimally self-consistent scenario, only decays and inverse decays.
 - Examine thermal corrections to other relevant processes, like *LH*-scatterings mediated by *N*, *NL* scatterings involving the top quark or gauge bosons.
 - Include thermal widths of quasiparticles.

Thank you for your attention!