QQ

Quasiparticles in Leptogenesis

Clemens Kießig

Max-Planck-Institut für Physik München (Werner-Heisenberg-Institut)

based on work with Michael Plümacher

Beyond 2010 - February 1, 2010

Quasiparticles in Leptogenesis Clemens Kießig

² [Leptogenesis](#page-3-0)

- **[Overview](#page-7-0)**
- [May you put in thermal masses "by hand"?](#page-10-0)
- **•** [Fermionic quasiparticles](#page-15-0)

[Conclusions](#page-21-0)

つくい

Matter-Antimatter Asymmetry

- **•** The universe today consists of matter and of practically no antimatter. Naively expected relic baryon density (annihilation into pions): $\frac{n_B}{n_\gamma} = \frac{n_{\bar{B}}}{n_\gamma}$ $\frac{n_{\bar{B}}}{n_{\gamma}}\sim 10^{-20}$
- Observed baryon asymmetry: $\eta_{\text{B}} = \frac{n_{\text{B}} n_{\text{B}}}{n_{\text{B}}}$ $\frac{1}{n_{\gamma}}^{1-n_{\rm \bar{B}}}\sim 10^{-9}$ \Rightarrow Huge number! Explanation?
- A matter-antimatter asymmetry can be dynamically generated if Sakharov's conditions [1967] are fulfilled:
	- baryon number violation
	- C and CP violation (reaction rates need to be different than for the charge conjugated processes)
	- deviation from thermal equilibrium (otherwise asymmetry washed out)
- **•** Different Baryogenesis theories
- Leptogenesis stems from a different problem in particle physics: The smallness of neutrino masses. \leftarrow \Box \rightarrow \leftarrow \leftarrow \Box \rightarrow 이동 비

Quasiparticles in Leptogenesis Clemens Kießig

Ξ

 $2Q$

 QQ

The unbearable lightness of neutrino masses

- Compared to all other fermions, neutrinos are extremely light \Rightarrow Yukawa couplings of $\sim 10^{-13}$ necessary for Dirac masses (cf. $Y_e \sim 10^{-6}$)
- Possible solution: Add three right-handed neutrinos N to the SM with Majorana mass terms at the GUT scale ($\sim 10^{16}$ GeV), assume Yukawa couplings h similar to the other fermions

$$
\delta \mathcal{L} = \bar{N}_i i \partial_\mu \gamma^\mu N_i - h_{i\alpha} \bar{N}_i \phi^\dagger \ell_\alpha - \frac{1}{2} M_i \bar{N}_i N_i^c + h.c.
$$

- Diagonalizing the mass matrix leads to six mass eigenstates: three heavy ones ($\sim M_i$) and three light ones $\frac{\partial (m^{\nu}_{ij}=-v^2(h^{\mathsf{T}}M^{-1}h)_{ij})\Rightarrow \text{See-saw mechanism}}$ The heavy Ns violate lepton number, but did we not want
	- a baryon asymmetry?

Quasiparticles in Leptogenesis Clemens Kießig

റററ

 Ω

Sphalerons: A black box

['t Hooft '76], [Rubakov, Shaposhnikov '85]

- Baryon (B) and lepton (L) numbers are not conserved in the SM due to a $U(1)$ triangle anomaly
- At high $T (\sim T_{FW} \sim 100$ GeV), thermal transitions between different vacua with different B and L numbers are possible: Sphalerons
- ∆B = ∆L = 3 for sphaleron processes, but B − L conserved \Rightarrow We need to violate $B - L$, otherwise sphaleron processes will wash out any existing asymmetry

The lightest (heavy) Majorana neutrino N_1 is an ideal candidate for baryogenesis:

- It decays out of equilibrium (no SM gauge interactions)
- It violates L and $B L$ $(N \rightarrow \ell \phi^{\dagger}, \overline{\ell} \phi)$
- **•** Sphaleron processes convert lepton asymmetry partially to baryon asymmetry
- The generated baryon asymmetry is proportional to the CP asymmetry in N_1 -decays: interference between tree level and one-loop diagrams:

O rough estimate for ϵ_1 in terms of neutrino masses:

$$
\varepsilon_{1} \simeq -\frac{3}{16\pi} \frac{M_{1}}{(hh^{\dagger})_{11}\nu^{2}}\textrm{Im}(h^{*}m_{\nu}\,h^{\dagger})_{11} \simeq -\frac{3}{16\pi} \frac{M_{1}m_{3}}{\nu^{2}} \sim 0.1 \frac{M_{1}}{M_{3}}
$$

For hierarchies like the quark sector $({M_1\over M_3}\sim 10^{-5}) \Rightarrow \epsilon_1 \sim 10^{-6}$

Quasiparticles in Leptogenesis Clemens Kießig

 QQ

റററ 00000

つくい

Baryon asymmetry

- Baryon asymmetry: $\eta_B = \frac{n_B n_{\bar{B}}}{n_{\alpha}}$ $\frac{(-n_{\rm B}}{n_{\gamma}}=-d\epsilon_1\kappa\sim 10^{-9},$ with dilution factor $d \sim 0.01$ (increase of photon number density), efficiency factor κ typically ~ 0.1 (Boltzmann equations); baryogenesis temperature $T_B \sim M_1 \sim 10^{10}$ GeV.
- Two parameters govern LG (neglecting flavor effects): M_1 and 'effective' ν mass $\tilde{m}_1 = \frac{(hh^{\dagger})_{11}v^2}{M_1}$ M_1
- \bullet N_1 decays in (out of) equilibrium if $\Gamma_1 > H$ ($\Gamma_1 < H$ with H Hubble parameter) $\Rightarrow \tilde{m}_1 > m_* \simeq 10^{-3}$ eV $(\tilde{m}_1 < m_* \simeq 10^{-3}$ eV)
- Numerical evaluation of Boltzmann equations shows: LG also possible close to equilibrium $(m_1 > m_*)$
- **•** lower bound on reheating temperature $T_R > 2 \times 10^9$ GeV

[Introduction and Motivation](#page-2-0) **Example 2018** [Leptogenesis](#page-3-0) **[Thermal corrections](#page-7-0)** [Conclusions](#page-21-0) Conclusions 10000C

つくい

Thermal field theory

At zero temperature vacuum expectation values of operators:

$$
\langle A \rangle = \langle 0 | A | 0 \rangle
$$

O Two-point Green's function:

$$
i\Delta(x-y)=\langle 0|T\{\phi(x)\phi(y)\}|0\rangle
$$

At finite temperature ensemble weighted expectation values:

$$
\langle A \rangle_{\beta} = \text{Tr}(\rho A) = \frac{1}{\text{Tr}(e^{-\beta H})} \Sigma_n \langle n | A | n \rangle e^{-\beta E_n}
$$

O Two-point function:

$$
i\Delta^{\mathcal{T}>0}(x-y)=\frac{1}{\mathcal{T}r(e^{-\beta H})}\Sigma_n\left\langle n\right|T\left\{\phi_x\phi_y\right\}|n\rangle e^{-\beta E_n}
$$

Quasiparticles in Leptogenesis Clemens Kießig

nnnn

 Ω

Thermal propagators

- Using bare thermal propagators can give IR singularities and gauge dependent results
- **o** cure: Hard Thermal Loop (HTL) resummation technique
- For soft momenta $K \ll T$, resummed propagators have to be used:

$$
\frac{\partial}{\partial \Delta} = \frac{\partial}{\partial \Delta} + \frac{\partial}{\partial \Delta} + \frac{\partial}{\partial \Delta} + \frac{\partial}{\partial \Delta} + \cdots
$$
\n
$$
i\Delta^* = i\Delta + i\Delta(-i\Sigma)i\Delta + \cdots = \frac{i}{\Delta^{-1} - \Sigma} = \frac{i}{K^2 - m^2 - \Sigma}
$$
\n
$$
\Rightarrow \text{Thermal masses } m_{\text{th}}^2(T) := m^2 + \Sigma
$$

 Ω

Thermal corrections to leptogenesis

Thermal corrections have been investigated [Giudice, Notari, Raidal, Riotto, Strumia '03]

- \bullet Renormalization of couplings at \sim 2πT, most importantly the top Yukawa and neutrino masses
- **•** thermal corrections to decay and scattering processes, using HTL resummed propagators and thermal masses in the kinematics of the final states:
	- \bullet decays $N \rightarrow HL$
	- $\triangle L = 2$ scatterings $LH \rightarrow \overline{LH}$ and $LL \rightarrow \overline{HH}$, mediated by N_1 . The N_1 on-shell contributions are taken into account by decays and inverse decays and have to be subtracted
	- $\triangle L = 1$ scatterings involving the top quark and gauge bosons
- **•** thermal corrections to the CP asymmetry ϵ_{N_1} ϵ_{N_1} ϵ_{N_1} ϵ_{N_1} ϵ_{N_1}

Thermal masses by hand

- To understand thermal masses, consider the decay rate $N \rightarrow LH$.
- put in thermal masses "by hand":

$$
\gamma_D^{\text{eq}} = \int d\tilde{p}_N d\tilde{p}_L d\tilde{p}_H (2\pi)^4 \delta^4 (P_N - P_L - P_H) |\mathcal{M}|^2 f_N (1 + f_H) (1 - f_L),
$$

where $\mathsf{d}\tilde p_i=\frac{p_i^3}{(2\rho i)^3 2E_i}$

- **•** Assume either
	- **•** Fermi- and Bose-statistics
	- or Maxwell-Boltzmann statistics \Rightarrow enhancement and blocking factors $(1 + f_H)(1 - f_L)$ become 1. Deviation typically $\mathcal{O}(10\%)$.

May you put in thermal masses by hand?

- What is the consistent TFT-treatment of thermal masses?
- Calculate the N self energy at finite T and use TFT cutting rules [Weldon '83, Kobes and Semenoff '86]:

[Introduction and Motivation](#page-2-0) **Example 2** [Leptogenesis](#page-3-0) **[Thermal corrections](#page-7-0)** [Conclusions](#page-21-0) Conclusions 00000 000000

つくい

approximate HTL-propagators

$$
D^*(P_H) = \frac{1}{P_H^2 - m_H^2(T)}
$$
 HTL-resummed Higgs propagator,

$$
\frac{m_H^2(T)}{T^2} = \frac{3}{16}g_2^2 + \frac{1}{16}g_Y^2 + \frac{1}{4}y_t^2 + \frac{1}{2}\lambda,
$$

For demonstration purposes, do not take full HTL fermion propagator, but approximation $S^*(P_L) = \frac{P_L}{P_L^2 - m_L^2(\mathcal{T})}$ (see next chapter), $\frac{m_l(T)^2}{T^2}=\frac{3}{32}g_2^2+\frac{1}{32}g_Y^2$ is given by gauge interations

Interpretation of the discontinuity

$$
\text{tr}(\mathcal{P}_N \text{Im}\Sigma) = -\int d\tilde{p}_L d\tilde{p}_H (2\pi)^4 \delta^4 (P_N - P_H(T) - P_L(T))
$$

$$
\times |\mathcal{M}|^2 (1 - f_L + f_H)
$$

 \bullet 1 – f_L + f_H = $(1 - f_L)(1 + f_H) + f_L f_H$ includes both $N \rightarrow LH$ and $IH \rightarrow N$

$$
\bullet \ \Gamma = -\frac{1}{2p_N^0} tr(\mathcal{P}_N Im \Sigma), \Gamma_D = (1 - f_N(\rho_N^0)) \Gamma, \Gamma_{ID} = f_N(\rho_N^0) \Gamma
$$

- **•** result equals "per hand" treatment, propagators same structure as at $T = 0$, but
	- Full HTL Lepton propagator has a different structure \rightarrow quasi-particle structure
	- Fermi- and Bose distribution functions always appear in TFT calculations, even without thermal masses \Rightarrow Maxwell-Boltzmann appears not cons[ist](#page-12-0)[ent](#page-14-0)

 $M_1=10^{10}$ GeV , $\tilde{m}_1=0.06$ eV (Δm^2_{atm})

• Cutoff at $M_N = m_H(T)$, deviation of up to 20 %.

€⊡

 QQ

Due to its fermionic structure, the lepton propagator cannot be resummed like a scalar propagator, but yields a more complicated result.

L

 \bullet In the helicity eigenstate representation, it reads:

L

$$
S^*(K) = \frac{1}{2D_+(K)}(\gamma_0 - \hat{\mathbf{k}} \cdot \gamma) + \frac{1}{2D_-(K)}(\gamma_0 + \hat{\mathbf{k}} \cdot \gamma),
$$

where

$$
D_{\pm}(K) = -k_0 \pm k + \frac{m_L(T)^2}{k} \left(\pm 1 - \frac{\pm k_0 - k}{2k} \ln \frac{k_0 + k}{k_0 - k} \right)
$$

[T](#page-15-0)he thermal lepton mass is given by gauge interactions: $\frac{m_1(T)^2}{T^2} = \frac{3}{32}g_2^2 + \frac{1}{32}g_Y^2$ Ω

Fermion dispersion relations

The propagator has two poles at $D_{\pm}(\omega_{\pm})=0$ corresponding to two dispersion relations

$$
\omega_{\pm} = \pm k \frac{W_{-1,0}(-\exp(-2\frac{k^2}{m_L^2} - 1)) - 1}{W_{-1,0}(-\exp(-2\frac{k^2}{m_L^2} - 1)) + 1}
$$
\n(1)

where $W(s) = x$ is the Lambert W function, i.e. the inverse of $s = xe^x$, and $W_0 \ge -1$ and $W_{-1} \le -1$ are its two real branches. The ω_- -branch is the so-called plasmino.

Quasiparticle masses revisited

• For
$$
k \to \infty
$$
: $\omega_+(k) \to \sqrt{k^2 + 2m_L^2}$ $\omega_-(k) \to k$

 \bullet Using $\omega_-\,$ and $\omega_+\,$ corresponds to different thermal masses (ranging from 0 to $\sqrt{2}$ m_l) \Rightarrow correction, threshold $M_H = m_H + m_l$ relaxed.

Quasiparticles in Leptogenesis Clemens Kießig

 \bullet 00

 Ω

Decay rate for two lepton modes

• Calculating Γ_{+} using the optical theorem, one gets as matrix element

$$
|\mathcal{M}_\pm|^2 = g^2 \frac{\omega_\pm^2 - k^2}{2m_L(T)^2} \left(\omega_\pm p_0 \mp \omega_\pm \eta \right),
$$

where $\eta = \mathbf{k} \cdot \mathbf{p}/k\rho$ is the angle between neutrino and lepton.

• For comparison the one-mode approximation

$$
|\mathcal{M}|^2 = g^2 K_\mu P^\mu = \frac{1}{2} \left(M_N^2 - m_L(T)^2 + m_H(T)^2 \right)
$$

[Introduction and Motivation](#page-2-0) **Leptogenesis [Thermal corrections](#page-7-0)** [Conclusions](#page-21-0) Conclusions 0000●0

 QQ

Comparing with one mode approximation

- \bullet decay density for the \pm modes and the one-mode approximation, $M_N = 10^{10} \text{GeV}, \ \tilde{m}_1 = 0.06 \text{eV}.$
- Thresholds are at $M_N = m_H + \sqrt{2}m_L$, $M_N = m_H$ and $M_N = m_H + m_L$. \bullet
- \bullet The deviation reaches one order of magnitude in the interesting temperature regime $T \sim M$.

What needs to be done for a self-consistent implementation in the dynamics?

- When $M_N < m_H(T)$, the decay $H \rightarrow NL$ opens up \Rightarrow Calculate γ_{H+} .
- Calculate the effect on the CP-asymmetries $\epsilon_N(T)$, $\epsilon_H(T)$.
- Minimal self-consistent treatment without scatterings and gauge interactions, gives an idea of the effect.

Summary:

- Putting in thermal masses "by hand" is a justifiable approximation for the N decay density γ_D to some accuracy.
- **In the TFT treatment, Fermi-Bose distribution functions appear at the** same order as thermal masses \rightarrow Maxwell-Boltzmann not consistent.
- Two lepton modes give corrections of one order of magnitude in the interesting temperature regime $T \sim M_N$.
- **•** Future work:
	- Determine the dynamics of the minimally self-consistent scenario, only decays and inverse decays.
	- Examine thermal corrections to other relevant processes, like LH-scatterings mediated by N , NL scatterings involving the top quark or gauge bosons.
	- **Include thermal widths of quasiparticles.**

Thank you for your attention!

 Ω