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Matter-Antimatter Asymmetry

The universe today consists of matter and of practically no
antimatter. Naively expected relic baryon density (annihilation into
pions): nB

nγ

=
nB̄

nγ

∼ 10−20

Observed baryon asymmetry: ηB = nB−n
B̄

nγ

∼ 10−9

⇒ Huge number! Explanation?

A matter-antimatter asymmetry can be dynamically generated if
Sakharov’s conditions [1967] are fulfilled:

baryon number violation
C and CP violation (reaction rates need to be different than for the

charge conjugated processes)
deviation from thermal equilibrium (otherwise asymmetry washed

out)

Different Baryogenesis theories

Leptogenesis stems from a different problem in particle physics:
The smallness of neutrino masses.
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The unbearable lightness of neutrino masses

Compared to all other fermions, neutrinos are extremely
light ⇒ Yukawa couplings of ∼ 10−13 necessary for Dirac
masses (cf. Ye ∼ 10−6)
Possible solution: Add three right-handed neutrinos N to
the SM with Majorana mass terms at the GUT scale
(∼ 1016 GeV), assume Yukawa couplings h similar to the
other fermions

δL = N̄i i∂µγµNi − hiαN̄iφ
†ℓα − 1

2
MiN̄iN

c
i + h.c.

Diagonalizing the mass matrix leads to six mass
eigenstates: three heavy ones (∼ Mi) and three light ones
(mν

ij = −v 2(hTM−1h)ij) ⇒ See-saw mechanism
The heavy Ns violate lepton number, but did we not want
a baryon asymmetry?
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Sphalerons: A black box

[’t Hooft ’76], [Rubakov, Shaposhnikov ’85]

Baryon (B) and lepton (L) numbers are not conserved in
the SM due to a U(1) triangle anomaly

At high T (∼ TEW ∼ 100 GeV), thermal transitions
between different vacua with different B and L numbers
are possible: Sphalerons

∆B = ∆L = 3 for sphaleron processes, but B − L

conserved ⇒ We need to violate B − L, otherwise
sphaleron processes will wash out any existing asymmetry
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N decays
The lightest (heavy) Majorana neutrino N1 is an ideal candidate for baryogenesis:

It decays out of equilibrium (no SM gauge interactions)

It violates L and B − L (N → ℓφ†, ℓφ)

Sphaleron processes convert lepton asymmetry partially to baryon asymmetry

The generated baryon asymmetry is proportional to the CP asymmetry in
N1-decays: interference between tree level and one-loop diagrams:

N1

li

F

li

F

N1 N1

F

li

N2

F

lj

N2

F

lj

rough estimate for ǫ1 in terms of neutrino masses:

ǫ1 ≃ − 3

16π

M1

(hh†)11v2
Im(h∗mνh†)11 ≃ − 3

16π

M1m3

v2
∼ 0.1

M1

M3

For hierarchies like the quark sector (M1
M3

∼ 10−5) ⇒ ǫ1 ∼ 10−6
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Baryon asymmetry

Baryon asymmetry: ηB = nB−n
B̄

nγ

= −d ǫ1 κ ∼ 10−9,
with dilution factor d ∼ 0.01 (increase of photon number density),
efficiency factor κ typically ∼ 0.1 (Boltzmann equations);

baryogenesis temperature TB ∼ M1 ∼ 1010 GeV.

Two parameters govern LG (neglecting flavor effects):

M1 and ’effective’ ν mass m̃1 = (hh†)11v
2

M1

N1 decays in (out of) equilibrium if Γ1 > H (Γ1 < H with H Hubble
parameter) ⇒ m̃1 > m∗ ≃ 10−3 eV (m̃1 < m∗ ≃ 10−3 eV)

Numerical evaluation of Boltzmann equations shows: LG also
possible close to equilibrium (m̃1 > m∗)

lower bound on reheating temperature TR > 2 × 109 GeV
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Thermal field theory

At zero temperature vacuum expectation values of operators:

〈A〉 = 〈0|A|0〉

Two-point Green’s function:

i∆(x − y) = 〈0|T{φ(x)φ(y)}|0〉

At finite temperature ensemble weighted expectation values:

〈A〉β = Tr(ρA) =
1

Tr(e−βH)
Σn 〈n|A|n〉 e−βEn

Two-point function:

i∆T>0(x − y) =
1

Tr(e−βH)
Σn 〈n|T{φxφy}|n〉 e−βEn
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Thermal propagators

Using bare thermal propagators can give IR singularities
and gauge dependent results

cure: Hard Thermal Loop (HTL) resummation technique

For soft momenta K ≪ T , resummed propagators have
to be used:

= + + + ...

i∆∗ = i∆+i∆(−iΣ)i∆+... =
i

∆−1 − Σ
=

i

K 2 − m2 − Σ

⇒ Thermal masses m2
th(T ) := m2 + Σ
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Thermal corrections to leptogenesis

Thermal corrections have been investigated [Giudice, Notari,
Raidal, Riotto, Strumia ’03]

Renormalization of couplings at ∼ 2πT , most importantly the
top Yukawa and neutrino masses

thermal corrections to decay and scattering processes, using
HTL resummed propagators and thermal masses in the
kinematics of the final states:

decays N → HL

∆L = 2 scatterings LH → LH and LL → HH, mediated by
N1. The N1 on-shell contributions are taken into account by
decays and inverse decays and have to be subtracted
∆L = 1 scatterings involving the top quark and gauge bosons

thermal corrections to the CP asymmetry ǫN1
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Thermal masses by hand

To understand thermal masses, consider the decay rate
N → LH.

put in thermal masses “by hand”:

γeq
D =

∫

dp̃Ndp̃Ldp̃H(2π)4δ4(PN−PL−PH)|M|2fN(1+fH)(1−fL),

where dp̃i =
p3

i

(2pi)32Ei

Assume either

Fermi- and Bose-statistics
or Maxwell-Boltzmann statistics ⇒ enhancement and
blocking factors (1 + fH)(1 − fL) become 1. Deviation
typically O(10%).
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May you put in thermal masses by hand?

What is the consistent TFT-treatment of thermal masses?

Calculate the N self energy at finite T and use TFT
cutting rules [Weldon ’83, Kobes and Semenoff ’86]:

N N

L

H H

L

N→

Σ = −g 2T
∑

p0
L
=2πinT

∫

d3pL

(2π)3
S∗(PL)D

∗(PH)
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approximate HTL-propagators

D∗(PH) = 1
P2

H
−m2

H
(T )

HTL-resummed Higgs propagator,

m2
H
(T )

T 2 = 3
16g2

2 + 1
16g2

Y + 1
4y2

t + 1
2λ,

+++

For demonstration purposes, do not take full HTL fermion
propagator, but approximation S∗(PL) = 6PL

P2
L
−m2

L
(T )

(see next

chapter),
mL(T )2

T 2 = 3
32g2

2 + 1
32g2

Y is given by gauge interations
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Interpretation of the discontinuity

tr(P/N ImΣ) = −
∫

dp̃Ldp̃H(2π)4δ4(PN − PH(T ) − PL(T ))

×|M|2(1 − fL + fH)

1 − fL + fH = (1 − fL)(1 + fH) + fLfH includes both N → LH

and LH → N

Γ = − 1
2p0

N

tr(P/N ImΣ), ΓD = (1 − fN(p0
N))Γ, ΓID = fN(p0

N)Γ

result equals “per hand” treatment, propagators same
structure as at T = 0, but

Full HTL Lepton propagator has a different structure →
quasi-particle structure
Fermi- and Bose distribution functions always appear in TFT
calculations, even without thermal masses ⇒
Maxwell-Boltzmann appears not consistent
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decay rate γD

Comparison of Fermi-Bose and Maxwell-Boltzmann

mH(T ) = MN M/T

γFB

D /γMB

D

10510.5

1.2

1.1

1

0.9

0.8

fb mth
mb mth

mb

mH(T ) = MN
M/T

γD
Hn|T=MN

3210.5

25

20

15

10

5

0

M1 = 1010 GeV , m̃1 = 0.06 eV (∆m2
atm)

Cutoff at MN = mH(T ), deviation of up to 20 %.
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Decay rate γD : Including mL(T )

N N

L

H H

L

N→

Due to its fermionic structure, the lepton propagator cannot be resummed like
a scalar propagator, but yields a more complicated result.

In the helicity eigenstate representation, it reads:

S∗(K) =
1

2D+(K)
(γ0 − k̂ · γ) +

1

2D−(K)
(γ0 + k̂ · γ),

where

D±(K) = −k0 ± k +
mL(T )2

k

„

±1 − ±k0 − k

2k
ln

k0 + k

k0 − k

«

The thermal lepton mass is given by gauge interactions:
mL(T )2

T 2 = 3
32

g2
2 + 1

32
g2
Y
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Fermion dispersion relations
The propagator has two poles at D±(ω±) = 0 corresponding to two dispersion
relations

ω± = ±k

W−1,0(− exp(−2 k2

m2
L

− 1)) − 1

W−1,0(− exp(−2 k2

m2
L

− 1)) + 1

(1)

where W (s) = x is the Lambert W function, i.e. the inverse of s = xex , and W0 ≥ −1
and W−1 ≤ −1 are its two real branches. The ω−-branch is the so-called plasmino.

k
−
+

p/mL(T )

ω/mL(T )

32.521.510.50

3

2.5

2

1.5

1

0.5

0

ω
ω

√

k2 + m2
L
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Quasiparticle masses revisited

For k → ∞: ω+(k) →
√

k2 + 2m2
L ω−(k) → k

Using ω− and ω+ corresponds to different thermal masses
(ranging from 0 to

√
2 mL) ⇒ correction, threshold

MH = mH + mL relaxed.
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Decay rate for two lepton modes

Calculating Γ± using the optical theorem, one gets as
matrix element

|M±|2 = g 2 ω2
± − k2

2mL(T )2
(ω±p0 ∓ ω±η) ,

where η = k · p/kp is the angle between neutrino and
lepton.

For comparison the one-mode approximation

|M|2 = g 2KµPµ =
1

2

(

M2
N − mL(T )2 + mH(T )2)

)
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Comparing with one mode approximation

decay density for the ± modes and the one-mode approximation,
MN = 1010GeV, m̃1 = 0.06eV.

Thresholds are at MN = mH +
√

2mL, MN = mH and MN = mH + mL.

The deviation reaches one order of magnitude in the interesting temperature
regime T ∼ M.
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What needs to be done for a self-consistent

implementation in the dynamics?

When MN ≤ mH(T ), the decay H → NL opens up ⇒
Calculate γH±.

Calculate the effect on the CP-asymmetries ǫN(T ),
ǫH(T ).

Minimal self-consistent treatment without scatterings and
gauge interactions, gives an idea of the effect.

Quasiparticles in Leptogenesis Clemens Kießig



Introduction and Motivation Leptogenesis Thermal corrections Conclusions

Conclusions

Summary:
Putting in thermal masses “by hand” is a justifiable approximation for
the N decay density γD to some accuracy.
In the TFT treatment, Fermi-Bose distribution functions appear at the
same order as thermal masses → Maxwell-Boltzmann not consistent.
Two lepton modes give corrections of one order of magnitude in the
interesting temperature regime T ∼ MN .

Future work:
Determine the dynamics of the minimally self-consistent scenario, only
decays and inverse decays.
Examine thermal corrections to other relevant processes, like
LH-scatterings mediated by N, NL scatterings involving the top quark or
gauge bosons.
Include thermal widths of quasiparticles.

Thank you for your attention!
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