

03.03.2010

The KATRIN experiment

How to determine the neutrino mass scale ?

- 1) Cosmologycal observations very sensitive, but model dependent current sensitivity: $\Sigma m(v_i) \approx 0.4 - 2 \text{ eV}$
- 2) Search for $0\nu\beta\beta$

Hochschule Fulda

University of Applied Sciences

very sensitive, but needs v to be of Majorana-type sensitive to coherent sum: $m_{ee}(v) = |\Sigma|U_{ei}^{2}|e^{i\alpha(i)}m(v_{i})|$ \Rightarrow partial cancelation possible Evidence for $m_{ee}(v) \approx 0.4 \text{ eV}$ (Klapdor-Kleingrothaus et al.)?

- 3) Direct neutrino mass determination: No further assumptions needed ($E^2 = p^2c^2 + m^2c^4 \Rightarrow m^2(v)$)
 - Time-of-flight measurements (v from supernova) SN1987a ⇒ $m(v_e)$ < 5.7 eV (PDG 2006)
 - **Kinematics of weak decays** (β -decay search for m_{ve})
 - \Box ¹⁸⁷Re β -decay bolometers
 - tritium ß-decay spectrometers

β-decay and neutrino mass

kinetic measurement of the effective neutrino mass

Hochschule Fulda University of Applied Sciences

$$m_{\nu_e} = \sqrt{\sum_{i=1}^{3} |U_{ei}|^2 m_i^2} \qquad C = G_F^2 \frac{m_e^3}{2 \pi^3} \cos^2 \theta_C |M|^2$$

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}E} = C p \left(E + m_e\right) \left(E_0 - E\right) \sqrt{(E_0 - E)^2 - m_{\nu_e}^2} F(E) \theta(E_0 - E - m_{\nu_e})$$

History of ³H β -decay experiments

KATRIN at FZ Karlsruhe

Spectrometer buildings

Tritium Iaboratory TLK

70 m

background-

high ß-luminosity

counting

1

03.03.2010

reduction A.Osipowcz, BEYOND 2010, Cape Town

high energy resolution

<u>Magnetic Adiabatic Collimation + Electrostatic Filter</u> (A. Picard et al., Nucl. Instr. Meth. 63 (1992) 345)

- Two supercond. solenoids compose magnetic guiding field
- Electron source (T₂) in left solenoid

<u>Magnetic Adiabatic Collimation + Electrostatic Filter</u> (A. Picard et al., Nucl. Instr. Meth. 63 (1992) 345)

- Two supercond. solenoids compose magnetic guiding field
- Electron source (T₂) in left solenoid
- e⁻ in forward direction: magnetically guide (F=μ grad B)
- adiabatic transformation:
 μ = E_T/B = const.
 ⇒ parallel e⁻ beam

<u>Magnetic Adiabatic Collimation + Electrostatic Filter</u> (A. Picard et al., Nucl. Instr. Meth. 63 (1992) 345)

- Two supercond. solenoids compose magnetic guiding field
- Electron source (T₂) in left solenoid
- e⁻ in forward direction: magnetically guided
- adiabatic transformation: µ = E_T/B = const.
 ⇒ parallel e⁻ beam
- Integral energy analysis by electrostat. retarding field

 \$\mathcal{F}\$ \$E = \$E_{T,i}\$ B_{min}\$ \$B_{max}\$

<u>Magnetic Adiabatic Collimation + Electrostatic Filter</u> (A. Picard et al., Nucl. Instr. Meth. 63 (1992) 345)

⇒sharp integrating transmission function without tails:

 $\Delta E = E_{T,i} B_{min} / B_{max} = E_{T,i} A_{s,eff} / A_{analyse} \quad Mainz \approx 4.8 \text{ eV}; \text{ KATRIN} = 0.93 \text{ eV}$

Source and transport section (tritium system)

 \Rightarrow adiabatic electron guidance & T_2 reduction factor of ~10¹⁴

Windowless Gaseous Tritium Source

Complex 16m long cryostat:

- 12 cryogenic circuits
- 500 sensors from 4 600 K
- super conducting magnets (4.5 K, 3.6T)
- 2 phase Neon cooling of source tube
- tritium temperature: 27 ± 0.03 K
- long term stability: ± 0.1%

Status:

cryostat under construction2010:12 m demonstrator2011:16 m WGTS

Differential Pumping Section (DPS)

Cryo pumping section (CPS)

Codes: customized IGUN, Simion, native Codes ,PartOpt

Magn. Induction at analysing plane

Hochschule Fulda

University of Applied Sciences

Design of the main spectrometer

A.Osipowcz, BEYOND 2010, Cape Town

Arrival of the main spectrometer after a voyage of 8800 km around Europe

A.Osipowcz, BEYOND 2010, Cape Town

Minimisation of spectrometer background

• UHV: p ≤ 10⁻¹¹ mbar

Hochschule Fulda University of Applied Sciences

• "massless" inner electrode system to protect against secondary electrons from the walls

Results from the Mainz spectrometer:

Pre-spectrometer

frame for the cylindrical part of main spectrometer

Electrode concept for main spectrometer: 650 m² surface: 2-layer wire modules

Wire electrode system of KATRIN main spec:

- 248 modules, 23440 wires, 46240 ceramics

Technical requirements:

- bake-out at 350°C
- vacuum requirements (10⁻¹¹ mbar)
- position ($\Delta x = \pm 200 \ \mu m$)

Railway installation finished: May 2009 Start of wire electrode installation: June 2009

Hochschule Fulda

University of Applied Sciences

A.Osipowcz, BEYOND 2010, Cape Town

Determination of the magnetic field inside the main spectrometer

Accuracy of B in central analysing area

Measurement of magnetic field *inside* main spectrometer

A.Osipowcz, BEYOND 2010, Cape Town

Scheme of mobile sensor unit (MOBS) mounting

Hochschule Fulda

University of Applied Sciences

A.Osipowcz, BEYOND 2010, Cape Town

Status of the main spectrometer

- successfull bake-out (350°C) and vacuum tests
- inner electrode system being prepared for installation
 - 23440 individual wires in 248 frames (University Münster)
 - clean room scaffolding inside vessel installed, mounting ongoing
- Helmholtz coils with 12.6 m diameter installed
- first electromagnetic tests planned in 2010
- Installation & test of mag. field monitoring system start 2010

- monolithic segmented SI-PIN-diode array
 - counts transmitted electrons after main spectrometer
 - very low background
 - determines radial position and azimuth angle
- s.c. detector and pinch magnets (3 6 T)
- developed and supplied by US collaborators (UW, MIT)
- will be shipped to Karlsruhe in 2010

Hochschule Fulda

University of Applied Sciences

KATRIN sensitivity and discovery potential

Hochschule Fulda University of Applied Sciences

From neutrino oscillation experiments: mass splittings $\Re m_{ij}^2 = (m_i^2 - m_i^2)$ & mixings angles sin² 2 $\rightarrow \Re$

The most stringent direct upper limits on m_v

electrostatic filter with magnetic adiabatic collimation (MAC-E)

A.Osipowcz, BEYOND 2010, Cape Town

before

new electrode to avoid Penning trap

after

03.03.2010

Hochschule Fulda

KATRIN main components

- volume : -7.03 m < x < 6.83 m, R = 6 m
- global field
- external dipol
- LFCS energised
- bounday values randomised to sim 2% sensor error
- •Calc. Time: MATLAB: 4-5 days, C: < 5 min

A.Osipowcz, BEYOND 2010, Cape Town