Beyond 2010, Cape Town, 2nd February 2010

LUCIFER:

an Experimental Breakthrough in the Search for Neutrinoless Double Beta Decay

Andrea Giuliani

University of Insubria (Como) and INFN Milano-Bicocca

Italy

LUCIFER

Low-background Underground Cryogenics Installation For Elusive Rates

Principal Investigator:Fernando FerroniCo-Investigator :Andrea Giuliani

ERC-2009-AdG 247115

Double Beta Decay pilot project based on scintillating bolometers

Outline

- Double Beta Decay
- Experimental challenge and role of the background
- Silver and golden isotopes
- The bolometric technique and the golden isotopes
- > The LUCIFER way
- Prospects and conclusions

Decay modes for Double Beta Decay

Two decay modes are usually discussed:

$(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2v_{e}$

2v Double Beta Decay allowed by the Standard Model already observed $\tau \sim 10^{19} - 10^{21}$ y

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

Neutrinoless Double Beta Decay 76 Ge claim $\tau \ge 10^{25}$ y

Neutrinoless process would imply new physics beyond the Standard Model

violation of lepton number conservation

It is a very sensitive test to new physics since the phase space term is much larger than for the standard process

If observed:
$$\implies m_v$$

$$m_{v} \neq 0$$
$$v \equiv \overline{v}$$

Ov-DBD and neutrino masses

how **Ov-DBD** is connected to neutrino mixing matrix and masses in case of process induced by **mass mechanism**

The size of the challenge

Electron sum energy spectra in DBD

The shape of the two electron sum energy spectrum enables to distinguish among the two different decay modes

The importance of a high Q-value

A high Q-value is important for two reasons:

- \succ High phase space for the decay: $\propto Q^5$
- > If **Q** > 2615 keV, the signal is out of the bulk of the natural γ radioactivity

Position of the Q-values for some interesting candidates superimposed to a γ spectrum taken underground without any form of passive shielding

2615 keV

Silver and golden isotopes

Only a few isotopes are really in the game for the search for neutrinoless Double Beta Decay

From the point of view of the **Q-value**, they can be divided into: **Golden isotopes**: ${}^{48}Ca - {}^{82}Se - {}^{96}Zr - {}^{100}Mo - {}^{116}Cd - {}^{150}Nd$ **Silver isotopes**: ${}^{76}Ge - {}^{130}Te - {}^{136}Xe$

Other factors favour certain isotopes with respect to others:

- Easy association to an experimental technique
- High isotopic abundance and/or easy enrichment
- Achievable radiopurity

The role of nuclear matrix elements in isotope choice

Which technique can study one or more golden isotopes?

Tracko-calo approach: the source is a thin foil inserted in a nuclear detector with tracking and calorimetric capability $\rightarrow \sim 5$ kg source in each module NEMO – SuperNEMO experiments $\rightarrow {}^{100}Mo$, ${}^{82}Se$ or ${}^{150}Nd$

Bolomteric approach: the source is embedded in a crystal which is cooled down at ~10 mK and work as a bolometer \rightarrow only energy is measured but with high resolution \rightarrow ~0.5 kg source in each crystal Cuoricino – CUORE experiments \rightarrow ¹³⁰Te, but potentially most of golden isotopes *Silvia Capelli*, *Thursday*

The nuclear energy is measured as a temperature increase of a single crystal

$$\Delta T = E/C$$

In order to get low heat capacities, the temperature must be very low (**5** – **10 mK**)

Thanks to a proper thermometer, Δ

 $\Delta T \Rightarrow \Delta V$

Typical signal sizes: 0.1 mK / MeV, converted to about 1 mV / MeV

Silver and golden isotopes with the bolometric technique

Nucleus		I. A. [%]	Q-value [keV]	Materials successfully tested as bolometers in crystalline form				
76 136 130	Ge Xe Te	7.8 8.9 33.8	2039 2479 2527	Ge NONE TeO ₂				
¹¹⁶ Cd 7.5 2802 CdWO ₄ , CdMoO ₄				$CdWO_{A}$, $CdMoO_{A}$				
⁸² Se 9.2 2995 ZnSe		2995	ZnSe					
¹⁰⁰ Mo 9.6 3034 PbMoO ₄ , CaMoO		3034	PbMoO ₄ , CaMoO ₄ , SrMoO ₄ , CdMoO ₄ , SrMoO ₄ , ZnMoO ₄ ,					
				Li ₂ MoO ₄ , MgMoO ₄				
⁹⁶ Zr		2.8	3350	ZrO ₂				
¹⁵⁰ Nd 5.6 3		3367	NONE \rightarrow many attempts					
⁴⁸ Ca		0.187	4270	CaF ₂ , CaMoO ₄				
	Seven excellent candidates can studied with high energy							
	resolution and with the bolometric approach							

Is a pure bolometer the best device to study a golden isotope ?

Following the previous arguments, an obvious way to get low background and to perform **multi-isotope search** with high sensitivity would be:

- Invest money in enrichment
- Invest money in crystal growth with radio-clean procedures
- Exploit the existing facilities for large mass bolometric experiments (Cuoricino, CUORE at LNGS)

In parallel to ¹²⁰Te, study the potentially much better candidates ⁸²Se, ¹¹⁶Cd, ¹⁰⁰Mo, ⁴⁸Ca and others

Unfortunately, the Cuoricino / CUORE R&D experience tells us that the improvement with respect to ¹³⁰Te study would be minor or negligible

WHY?

The Cuoricino background and the surface radioactivity

The origin of the continuum above ~2.5 MeV

Bolometers are fully sensitive, up to the detector surface \rightarrow **no dead layer**

Shallow (up to **10** μ m deep) surface contamination (for example ²¹⁰Pb) of the bolometers themselves or of the materials surrounding them emit alpha particles

The fundamental idea and the LUCIFER precursors

A device able to measure simultaneously the **phonon (heat)** excitations and the **photon** (scintillation) excitations generated in a crystal by the same nuclear event can efficiently discriminate alphas from betas / gammas.

Alphas emit a different amount of light with respect to beta/gamma of the same energy (normally lower $\rightarrow \alpha$ QF < 1, but not in all cases).

A **scatter plot light vs. heat** separates alphas from betas / gammas.

The **experimental basis** for **LUCIFER** is the R&D activity performed by **Stefano Pirro** at LNGS , in the framework of the programs:

- **BOLUX**, funded by INFN CSN5
- ILIAS-IDEA funded by the European Commission (WP2-P2)

Double bolometer for heat and light

The most convenient method to realize a light detector at low temperatures is the development of an **auxiliary bolometer**, made with a thin absorber opaque – to the light emitted by the **main bolometer**, and facing one polished side of it.

Silver and golden isotopes in scintillating bolometers

Nucleu	s I. A. [%]	Q-value [keV]	Materials successfully tested as bolometers in crystalline form							
76Ge 136Xe 130Te 116Cd 82Se 100M0 96Zr 150Nd 48Ca	7.8 8.9 33.8 7.5 9.2 9.6 2.8 5.6 0.187	2039 2479 2527 2802 2995 3034 3350 3367 4270	Ge NONE TeO ₂ CdWO ₄ , CdMoO ₄ ZnSe PbMoO ₄ , CaMoO ₄ , SrMoO ₄ , CdMoO ₄ , SrMoO ₄ , ZnMoO ₄ , Li ₂ MoO ₄ , MgMoO ₄ ZrO ₂ NONE \rightarrow many attempts CaF ₂ , CaMoO ₄ S. Púrro	-						
	Four golden candidates (¹¹⁶ Cd – ¹⁰⁰ Mo – ⁸² Se – ⁴⁸ Ca) can studied as scintillating bolometers									

The best technical results so far: CdWO₄

Discrimination power in CdWO₄

A good compromise: ZnSe

CdWO₄ is an excellent candidate for a DBD experiment based on scintillating bolometers. However, **three drawbacks**:

- → High atomic mass of W \rightarrow only **32% useful material** in case of 100% enrichment
- Crystals examined so far exhibit a huge internal alpha contamination
- > ¹⁰⁹Cd has a huge neutron cross section \rightarrow residual abundance in enriched material

ZnSe is another excellent candidate which is not affected by these problems:

- \blacktriangleright <A>_{zn} = 64.4 \rightarrow 56% useful material
- Preliminary measurements show that the crystals are reasonably radiopure
- > No isotope with particularly high neutron cross sections

Several ZnSe crystals have been tested, with masses up to **337** g

 \rightarrow excellent bolometric performance, similar to those observed in TeO₂ for CUORE

Two surprises for ZnSe (1)

... one is interesting but not really welcome

 α QF > 1: alphas give more light than gammas \rightarrow risk of leakage in the beta/gamma region?

Two surprises for ZnSe (2)

... the other one is very exciting \rightarrow improve dramatically the discrimination power

There are detectable differences in the light-signal time development between alpha and beta events \rightarrow **Pulse Shape Discrimination is possible**

The definition and use of proper shape parameters seem to enable **a full separation of beta and alpha** in the region of the DBD Q-value of ⁸²Se

Two surprises for ZnSe (2)

Target background

Current background studies show that a **background index < 10⁻³ counts/kev kg y** is achievable **above 2.6 MeV IF** one neglects the contribution from surface alphas

The various **techniques of surface cleaning** developed in the CUORE collaboration shows that the contribution coming from surface alphas above 2.6 MeV can be reduced at least down to **5x10⁻² counts /keV kg y**

This shows that a rejection efficiency of only **98%** would bring the surface alphas contribution down to 10^{-3} counts/kev kg y

The main purpose of LUCIFER is to **show that this background is achievable** with enriched material on a reasonable large scale (**15 – 20 kg of isotope**)

LUCIFER is a demonstrator...

Physics reach

...but has a remarkable physics reach by itself

From the LUCIFER proposal:

Crystal	lsotope weight	Useful material	Half Life limit (10 ²⁶ y)	Sensitivity* to m _{ee} (meV)
CdWO ₄	¹¹⁶ Cd 15.1 kg	32%	1.15	65-80
ZnMoO ₄	¹⁰⁰ Mo 11.3 kg	44%	1.27	67-73
ZnSe [baseline]	⁸² Se 17.6 kg	56%	2.31	52-65
ZnSe [option 1]	⁸² Se 20.5 kg	56%	2.59	49-61
ZnSe [option 2]	⁸² Se 27.8 kg	56%	3.20	44-55

* The 1 σ sensitivity is calculated with the Feldman Cousins approach for 5 y running and a background index $d\Gamma_b/dE = 10^{-3}$ c/keV/Kg/y. The matrix elements come from the two most recent QRPA calculations [ME08]; the energy window is taken as 5 keV, compatible with the resolution achieved in TeO₂ macrobolometers and in scintillating-bolometer R&D.

The most difficult tasks:

- ➤ negotiate a good contract for enrichment → Zelenogorsk (Siberia), Russia
- get radiopure and chemically pure isotope after enrichment

Prospects and conclusion

- The bolometric technique joined with scintillation allows to approach zero background in high Q-value isotopes
- **LUCIFER** is a **demonstrator** of this concept
- LUCIFER will study ⁸²Se with enriched ZnSe crystals in its baseline version
- > Technological problems of **enrichment**, **purification**, **crystallization**
- LUCIFER is a sensitive project by itself (it can approach the inverted hierarchy region of the neutrino mass pattern) but it can be seen as a pilot project preparing a possible (still to be discussed) CUORE upgrade after the TeO₂ run (cover fully the inverted hierarchy region)