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of accelerators can make the impossible happen

Peter McIntyre
Texas A&M University

Petavac: 100 TeV hadron 
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Accelerator-driven  
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Petavac
Boson-Boson Collisions at 100 TeV

1     τ (TeV)      10
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LHC will soon begin its physics program
14 TeV proton-proton collisions
design luminosity 1034 cm-2s-1 :
8 million W±, 1 million Z, 3000 tops per day 
8 T NbTi dipoles @ superfluid temperature

Peter Higgs visits CMS, hoping it will discover 
his particle. BEYOND 2010    Cape Town    2/1/2010



Discovery in Physics
Paradox → New Idea → Discovery

• Paradox: The weak interactions become strong!
– How does the electroweak interaction break spontaneously 

into electromagnetism and weak interaction?
• New idea: Higgs boson

– A new scalar field that couples to particles proportional to 
their mass, generates electroweak symmetry breaking.

• Hope for discovery at LHC:

Caution: we don’t know the mass scale!
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• Puzzle: Why are bosons and fermions so different?
– Could the same symmetry-breaking picture be extended to break 

the strong force at much higher energy?  Could the three 
interactions be unified at a single higher energy scale for 
Einstein’s dream?

• New idea: Supersymmetry/supergravity
– A new gauge field couples the fermions and bosons to 

superpartners under a 

• Hope for discovery at LHC:
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The Higgs boson and the spectrum of 
sparticles should be discovered at LHC, 

unless…

The flood of precise data from astrophysics suggests that the gauge 
fields of nature may be more complex than the picture of the 
Standard Model + Higgs + Supergravity

Example: large extra dimensions from strings and branes

We need to seek ways to extend the reach for discovery 
to the highest feasible mass scales. BEYOND 2010    Cape Town    2/1/2010



Hadron colliders are the only tools that 
can directly discover gauge particles 

beyond TeV
• Predicting the energy for discovery is perilous.
• Example: for a decade after discovery of the b quark, 

we ‘knew’ there should be a companion t quark.  But 
we couldn’t predict its mass.  Predictions over that 
decade grew (with the limits) 20 →40 →80 →120 GeV

• 4 e+e- colliders were built with top discovery as a goal.
• Finally top was discovered at Tevatron – 175 GeV!
• In the search for Higgs and SUSY, will history repeat?
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Tevatron accesses new physics 
through        annihilation.

LHC will access new physics 
through gluon fusion:

Petavac can access new physics 
through boson fusion

Mass reach for new physics

7x collision energy → 3x mass reach

1       τ (TeV)       10
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A new vision for the future of high-
energy discovery beyond LHC

• Hadron colliding beams in the SSC tunnel
• 16 T dipole rings provide 100 TeV collision energy
• Superferric injector located in the same tunnel

Three things make this possible to conceive:
Recent success maturing Nb3Sn dipole technology
Commercialization of Nb3Sn wire for ITER
84 km SSC tunnel is 70% complete, waits for use
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We now have a new 
superconductor for 16 T: Nb3Sn

Nb3Sn
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Cost today: NbTi $150/kg
Nb3Sn $1,000/kg
Bi-2212 $2,000/kg
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16 Tesla dipoles have been built and tested.
LBNL  HD1

4m-long racetrack coils using Nb3Sn have been built and tested.
LARP  LRS
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Nb3Sn superconducting wire with the necessary performance is 
developed and commercialized.

3,000 A/mm2 @ 12 T, 4.2 K in the superconductor

ITER will use 400 tons of high-performance Nb3Sn wire; it will 
drive the production capacity to what would be needed for Petavac.

Transition to volume 
manufacture is predicted to 
drop Nb3Sn wire price by half.
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Fermilab has matured antiproton 
source technology and electron cooling

Lebedev 2008

p3x1011 /hr stacked,
capacity for 10x more from 
target (adjacent Δp windows)

E-cooling in recycler has 
capacity for ~1014 p
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New magnet technology makes it 
possible to develop 16 T collider dipoles

• Block coil geometry
Arrange coil in rectangular blocks so that forces can be controlled.

• Stress management
Intercept stress within the coil so that it cannot accumulate.

• Optimized conductor
Separate the copper for quench protection into pure-Cu strands.

• Suppress persistent-current multipoles
Use close-coupled steel boundary to naturally suppress p.c. multipoles.



Nb3Sn dipole technology at Texas A&M:
stress management, flux plate, bladder preload
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Stress management
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Horizontal steel flux plate redistributes  
flux to suppress multipoles
0.5 T 14 T

Suppress snap-back x5, relax requirements on filament size in Nb3Sn.
BEYOND 2010    Cape Town    2/1/2010



Nb3Sn Magnets for Petavac

450 T/m quadrupole16.5 T dipole
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Ring Dipole
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16.8 T central field (short-sample limit), 6 cm bore
Jnon-Cu = 3000 A/mm2 @12 T, 4.2 K
Cryogenics 4-6 K supercritical He
Total superconductor cross-section = 80 cm2 (LHC dual dipole 68 cm2)
Max coil stress 117 MPa.   
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Collider layout
√s =100 TeV, L = 1035 cm-2 s-1

Main tunnel:
16  T double ring 5 → 50 TeV
1.6 T superferric injector 1 → 5 TeV

Medium-energy booster:
4 T cos θ booster 0.15 → 1 TeV
0.1 T permanent magnet freezer     8 GeV

Low-energy booster:
1.5 T rapid-cycling booster 8 → 150 GeV

Superconducting linac:     0.01 → 8 GeV
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SSC tunnel ~70% bored, 35% lined



Petavac Lattice

s (km)

β*   =  0.5 m
βmax = 9.6 km
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utility cell
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Superferric High-Energy Injector
shares the same tunnel

30 cm
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Asymmetric Top Factory

• Petavac circulates 50 TeV protons
• High energy booster in the same tunnel: 5 TeV
• Collide the two beams: 50x5 TeV2 = 16 TeV2

• Saturate top production with asymmetric collisions
• Similar benefits for studying      system as 

BABAR/BELLE for       system?
tt

bb
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How much would an 86 km ring 
of Nb3Sn dipoles cost?

• No one can know until we develop the 
technology and transfer it to industry, but…

• ‘the collared coils represent about 60% of the 
assembly cost and more than 70% of the total 
value of a dipole (mainly because of the 
superconducting cable cost)’                            
…Lucio Rossi, LHC magnet group leader

• p-p Petavac: 5 cm bore dual dipoles  → 15 ktons
• Petavac: 6 cm bore single dipoles →10 ktons
• Wire price today $1,000/kg, ÷3 in volume
• Magnet rings: p-p $8 billion 

pp

pp p$5 billion, but needs ultra-intense      source.



New magnet design, New materials, 
Dramatic Performance
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Accelerator Challenges for Pentavac
Synchrotron light: 6 W/magnet @ LHC, 

1600 W/magnet @ Pentavac!
Solution: room-temp photon stop between successive dipoles

0.7 m long water-cooled blade is inserted/retracted
so that it absorbs the entire fan of 
synchrotron light emitted in 
the flanking dipoles 

total cryogenic heat load 
6 W/dipole

Synchrotron light gives damping in all dimensions of phase space: 45 
minutes in Petavac (24 hours in LHC)
We should be able to suppress mechanisms for slow emittance growth.

5 K 77 K

300 K
20 K



Avoid beam-beam tune shift from subsidiary crossings of bunches
Move first elements of low-beta squeeze closer than at LHC:
4 x more bunches in ring
→ 4 x less confusion of interactions.

1 SUSY event in CMS same SUSY event with 300 interactions
BEYOND 2010    Cape Town    2/1/2010



Electron cloud effect:

•Beam protons ionize electrons from gas atoms
•Electrons are born with ~eV kinetic energy, so can’t reach wall 
before next bunch passes
•Electric field of next bunch accelerates electrons to ~kV energy
•Energetic electrons strike wall and liberate secondaries…
Poses serious challenge to reach even 1034 luminosity, much less 1035

Solution: Install continuous strip electrode on side wall of vacuum 
tube around entire ring.  Bias ~50 V clears all charge in <20ns
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Bunch-bunch tune spread kills luminosity.
Successive bunches have different tune shifts 
due to a multitude of phenomena (injection, 
circulating charge, bunch intensity variations, 
chromaticity).  The machine can be tuned to 
keep any one bunch happy, but the others…

Solution:
Use AC dipole to measure tunes of  
each bunch, use electron lens to correct
tunes of each bunch dynamically during store.

Qx

Ryoichi MiyamotoBEYOND 2010    Cape Town    2/1/2010



Dare we to dream today of an 
ultimate-energy hadron collider?

BEYOND 2010    Cape Town    2/1/2010

1982:  I woke up in the middle of the night and told Becky: ‘We 
need to build a gigantic hadron collider here in Texas to make a 
future for high energy discoveries.
Selling the idea wasn’t easy.   It was bust times in the economy, 

the project would cost billions.  
I sought help:  cheapest site for 50 mile circumference tunnel;

$1 Billion of Texas funds to boost the starting gate.



Texas universities arranged a briefing in the White House

After briefing, V.P. Bush asked his aide what was position at Energy.  ‘Strong support for the 
project but it would break the budget guideline.’  V.P. Bush told him to ask them to prepare a 
short document that he could take to the President…

It worked then; it could work today if it had the enthusiasm of the world high energy family.

June 30, 1985: West Wing briefing



Thorium fission for nuclear power
• Electrobreeding (transmutation of 232Th →233U) 

operates far from criticality (k ~ 0.98).
• The molten lead moderator provides natural 

convective cooling, huge thermal mass –
can’t melt down.

• The fast neutron flux used for electrobreeding -
the reactor eats its own long-lived waste.

• A sealed GW core runs 7 years without access 
• There are enough known reserves of thorium to    

power the Earth’s energy economy for 1000 yrs.
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The electrobreeding concept:
1 GeV protons→fast neutrons

•First proposed by E.O. Lawrence (1948),
later by C. Rubbia (1995).  

Fatal flaws: accelerator power, neutronics, reliability

n
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BEYOND 2010    Cape 
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Main elements of a thorium-cycle 
power plant



The neutrons are produced by 
spallation of ~1 GeV protons on Pb

• Produces fast neutrons.
• Neutrons degrade in very small energy steps in 

succeeding collisions with Pb nuclei.
• Molten lead serves as spallation target, moderator, 

and medium for convective heat exchange.

p U ~20 n/p
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Reactor Vessel

• Height 30 m
• Diameter 6 m
• Vessel material:        HT-9
• Wall thickness:       70 mm
• Coolant:           molten lead
• Mass: 2,000 T
• Beam power:              15 MW
• Thermal power: 1,500 MW
• Electric power:     625 MW
• Accelerator power: 30 MW
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Problem: We need a proton driver capable of 
~800 GeV energy, 15 MW power, ~50% efficiency!

• That is a very difficult design challenge for 
either isochronous cyclotrons or linacs –
space charge limits in injectors and 
acceleration.

• Most difficult – the accelerator must be a 
simple, reliable system that can be operated 
by a modest crew with long MTBF!
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Solution: Design a conservative 
accelerator, and replicate it:

• Three-stage accelerator system (2.5 mA)
0.1 → 5 MeV RF quadrupole, 
5  → 70 MeV injector cyclotron, 
70→ 800 MeV isochronous cyclotron (IC)

• Assemble a stack of seven flux-coupled ICs
Flux linkage
Independent RF, injection, extraction, vacuum, 
transport

• Reliability through redundancy
if one beam goes down, the reactor still operates.
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An isochronous cyclotron uses sector magnets with poles shaped 
so that revolution frequency is constant from injection (70 MeV) 

to extraction (800 MeV)

BEYOND 2010    Cape Town    
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Combine the high-energy 
isochronous cyclotron of PSI:

650 MeV, 2 mA
4 operators/shift
MTBF ~ 4 months

and the superconducting 
magnet design of Riken:

Superconducting coil, cold iron 
flux plate, warm iron flux returnBEYOND 2010    Cape Town    
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7-stack isochronous cyclotron

15 m

7m

BEYOND 2010    Cape Town    
2/1/2010



Each pole has 7 apertures, trims for 
isochronism and mid-plane symmetry

Flux plate = NbTi 
superconducting coil, 
contoured steel plate

10 flux plates,
Top/bottom sacrificial gaps

R = 2 → 5 m,  10 cm aperture – cold bore vacuumBEYOND 2010    Cape Town    
2/1/2010



Best choice of proton energy 
~800 MeV

Neutrons per proton, r = 30 cm
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Problem: Fission products shadow the 
neutrons

As fission proceeds, fission products absorb neutrons 
→ neutron gain varies strongly within core and through fuel burnup.

Single coaxial drive beam (Rubbia):

(From Rubbia)BEYOND 2010    Cape Town    
2/1/2010



Solution: arrange 7 proton drive beams 
in a hex array of fuel assemblies.

Better control, more efficient consumption of fuel.

fuel breeding zone

spallation zone

fission zone

proton beams

Distribute proton drive → Reduce variation k(r)

Sweep each beam along depth of beam tube →
Homogenize flux in r, z
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Model spallation source, 
neutronics in core

Slice through one sextant of the coreBEYOND 2010    Cape Town    
2/1/2010



Neutron spectrum in Spallation 
Zone

Radius (cm)
R = 30 cm → highest flux in resonance region
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Optimize core geometry
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Optimize fuel bundle for 
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→ 18 cm

Arrange bundles to 
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Power distribution in one sextant 
of the core
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Power and Criticality through 
Core Lifetime
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The 7-beam IC-driven thorium cycle operates as a sealed core for 7 years 
– no re-shuffle of fuel pins, better control for non-proliferation.BEYOND 2010    Cape Town    
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Isotope inventory through life cycle
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Very small inventories of waste isotopes (e.g. 241Am), 
very little bomb-capable isotopes (235U, 238Pu)BEYOND 2010    Cape Town    
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What happens if we lose one drive beam?
The transmutation sequence has a time delay: 
• 232Th + n→ 233Th 
• 233Th→ 233Pa + β (22 minutes)
• 233Pa→ 233U + β (27 days!)
• So if we lose a drive beam, the surrounding fuel builds up an anomalous 

inventory of 233U as the 233Pa decays but there is insufficient neutron flux to 
stimulate fission.

• Δk = +.02 due to local 233U spike
• k returns to normal when beam restored.
• Bottom line: Must design for k ~ 0.97
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Convective heat transport

in core and convection column in fuel element subchannel
BEYOND 2010    Cape Town    
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Heat transport simulation

Inner Outer 
Pin pitch 1.09 0.99 cm
Pin heat/length 203 135 W/cm
ΔT top-bottom 200 200 C
Pb velocity 1.02 0.96 cm/s
Pb viscosity 0.0043 0.0048 Poise
Pressure drop 27 38 kPa
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Why do long-lived waste isotopes 
accumulate in a thermal reactor?

A

Z

U

fission
neutron capture

β± decay

The fission products populate the 
center of the table of isotopes.
Most such isotopes can capture thermal 
neutrons (↑) and also undergo either 
beta decay (→) or inverse beta decay 
(←), so each nuclide diffuses among 
many values (Z,A).  
But there are a few bad guy isotopes 
with beta decay ½ life ~1000 y, and no 
ability to capture thermal neutrons.  
They are sticking points – the diffusing 
nuclides land there and cannot escape!BEYOND 2010    Cape Town    
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Adiabatic moderation of fast neutrons →
ADTC reactor eats its own long-lived waste.
Narrow energy steps assure that each neutron tickles all the narrow 
resonances of actinides, transuranics.  No sticking points!

Ping-pong ball hits bowling ball:
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So where is thorium, how much is 
there for the world’s needs?

Australia: 300,000 tons
India: 290,000 tons
Norway: 170,000 tons
US: 160,000 tons
Canada: 100,000 tons
World supply  1,200,000 tons

plenty more on the moon!

world energy demand:

~ 1,000 ton/year of thoriumBEYOND 2010    Cape Town    
2/1/2010



Conclusions
New superconductors and new 
magnet technology →
100 TeV hadron collider to link 
new gauge fields to cosmology.

New magnet and cavity technologies 
and new neutronics make it possible 
to burn desert sand to provide man’s 
energy needs for a thousand years. 

And these technologies lead to other good things…BEYOND 2010    Cape Town    
2/1/2010



GHz NMR Spectroscopy for Molecular Medicine

500 MHz 900 MHz

c‐AMP  antagonist of protein kinase in breast cancer

Tame high‐field superconductor Bi‐2212 to cable, coils.
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Alpha Magnetic Spectrometer
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Comparison of Parameters
Tevatron SSC LHC 100 TeV  100 TeV 

nominal
collision energy E 2 40 14 100 100TeV
gamma 1,066 21,322 7,463 53,305 53,305
luminosity 1.5E+32 5.6E+32 6.6E+33 1.0E+34 1.0E+35cm‐2s‐1

# bunches 36 16,440 2,800 11,000 11,000
# interactions/ 
collision 5 2 7 45 85
bunch spacing Tb 396 16 25 20 20ns
insertion optics:
betamax 0.8 8.1 5.0 4.0 4.0km
betamin 0.35 0.5 0.55 1 1m
total head‐on BB 
tune shift 0.0070 0.0012 0.0024 0.0047 0.0093
total tune shift 0.0022 0.0034 0.002 0.0022 0.0022
low‐beta gradient 141 230 250 500 500T/m
lattice magnets:

dipole field 4.4 6.79 8.39 16.34 16.34T
quad gradient 74 230 220 440 440T/m
dipole length 6 17 14.3 20 20m

circumference 6.28 83.631 26.7 83.631 83.631km
revolution frequency 47.8 3.6 11.2 3.6 3.6kHz
bend radius ρ 0.8 10.2 2.8 10.2 10.2km
betatron tune 20 95 63 81 81
# dipoles 840 3832 1250 3256 3256
# rings 1 2 2 1 1BEYOND 2010    Cape Town    
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Tevatron SSC LHC 100 TeV  100 TeV 
nominal

particles/bunch: 
p 3 0.075 1.15 0.6 1.21011

pbar 1 0.1 0.51011

transverse emittance 
e:
p 3.3 1 3.75 1 1p10‐6m
pbar 3 1 1p10‐6m

rms bunch length 55 6 7 6 6cm 
full crossing angle 0 150 285 150 150mrad
Piwinski parameter 0.90 0.58 1.01 1.01
total energy/beam 2 395 361 5280 10560MJ
# beam abort/dumps 1 1 1 4 4
total # protons 1 12 32 66 1321013

total # antiprotons 0.36 11 551013

antiproton 
consumption 0.01 0.7 7.21013/hr
antiproton source:
# production targets 1 2 20
# debuncher rings 1 24 241
debuncher accum 

rate 3 3 31011/hr
# accumulators 1 2 2

accumulator capacity 0.4 22.5 121013

store time Ts 33 24 15 8h
synchrotron radiation:
power/magnet  5 6 647 1572W
critical energy 0.4 281 44 4391 4391eV
energy loss/turn 0.122 0.007 4.8 4.8MeV
damping time:
longitudinal 13 26 0.8 0.8h
transverse 25 52 1.6 1.6h

BEYOND 2010    Cape Town    
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Main parameters of the core
Overall core dimensions

Radius 1.5 m
height 1.5 m

Fuel bundles
Fuel pin

         composition
         radius 0.35 cm
         cladding thickness 0.055 cm

Bundle size (flat to flat) 18 cm
Inner fuel region

         number of bundles 6x20
pins per bundle 271

Outer fuel region
number of bundles 6x14
pins per bundle 331

Starting fuel inventory:
Fresh      232Th 21 tons
Recycled 233U 2 tons

90%Th232, 10%U233
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