Experimental tests of gravitation at small and large scale (in the solar system)

Peter Wolf

Beyond the Standard Models, Cape Town, South Africa February 1 – 6, 2010

Introduction

- Gravitation is well described by General Relativity (GR).
- GR is a classical theory, which is difficult to reconcile with quantum field theory.
- All unification models predict (small) deviations of gravitation laws from GR.
- Gravity is well explored at small (laboratory) to medium (Moon, planets) distance scales.
- At very short range some theoretical models predict modifications (Brane models, compactified dimensions, short range couplings,)
- \bullet Mechanical measurements become difficult \Rightarrow atomic physics
- At very large distances (galxies, cosmology) some puzzles remain (dark matter and energy,).

• The largest distances explored by man-made artefacts are of the size of the outer solar system \Rightarrow carry out precision gravitational measurements in outer solar system

Scale dependent gravity

The Search for Non-Newtonian Gravity, E. Fischbach & C. Talmadge (1998)

FORCA-G

CAsimir FORce and Gravitation at short range

F. Pereira Dos Santos, P. Wolf, A. Landragin, M.-C. Angonin,
 P. Lemonde, S. Bize, A. Clairon
 <u>SYRTE (Observatoire de Paris, CNRS, UPMC)</u>

A. Lambrecht, S. Reynaud LKB (ENS, UPMC, CNRS)

Gravitation at short range

Limitations: Uncertainties in macroscopic force and distance measurement Seismic perturbations Statistics (Duty cycle)

Casimir-Polder 1948

Rich phenomenology:

- 2 crossovers : $1/L^4$ (VdW) to $1/L^5$ (CP) and back to $1/L^4$ (thermal)

- Out of thermal equilibrium : Additional $1/L^3$ dependence Theory and experiment (2007)

M. Antezza et al., PRA70, 053619 (2004)

- Dependence on atomic state, surface properties, surface/environment temperature, etc....
- Experiments confirm theory at the $\geq 10\%$ level, for various atoms, distances, temperatures ...

Principle of FORCA-G

• ⁸⁷Rb atoms

Trapped in a blue detuned standing wave (532 nm)

• For Rb: $\Delta_{\rm g} = m g \lambda_L/2 \sim 500 \,{\rm Hz}$

P. Wolf et al, PRA 75, 063608 (2007), F. Sorrentino et al., PRA 79, 013409 (2009)

Climbing up or down the W-S ladder

At a few $E_{\rm r}$ the coupling strengths $\Omega_0 \approx \Omega_{\pm 1}$.

 $\Delta_{g} \approx 500 \text{ Hz}$ is resolved by Raman lasers

 \Rightarrow Efficient control of the external states using the frequency difference between the Raman lasers

Transitions induced by Raman lasers

Raman lasers couples |g> to |e> in the same well,

but also to neighbouring wells when detuned by $\pm \Delta_g$

Good efficiency for $k_{eff} \sim k_L$

Climbing up and down : the interferometer

- Sensitivity: $\Delta \phi = 10^{-4}$ rad (after integration), $T_1 + T_2 = 0.1$ s, $\Rightarrow \Delta E / h \approx 10^{-4}$ Hz
- Measurement of g and m/h at the $10^{-8} 10^{-9}$ level (separating by 10 100 wells)
- Superposition close to the mirror : measurement of ΔU_{QED} , ΔU_{YUK}
- Accurate knowledge of the distance (determined by λ_{trap})

Site selection

Select atoms in one well Idea : superimpose a second lattice beam @515 nm ⇒ Create a SUPERLATTICE

- Lifts the degeneracy between $m \rightarrow m+1$ transitions
- Better with (moderate) increase of the lattice depth
- Provides one populated site every $8 \ \mu m \rightarrow Differential measurements$
- Need for a high resolution imaging system

Experimental setup

- 2D + 3D MOT
- Lattice/superlattice (532 nm + 515 nm)
- Transverse confinement (IR)
- Raman lasers Counter/co- propagating
- CCD Imaging

Systematic Effects

- Phase Coherence of Raman Beams: require < 0.01 rad @ 6.8 GHz
- Vibrations: use passive isolation: $\delta a/a \approx 10^{-8}$
- Knowledge of mg/h : require $\approx 10^{-8}$
- Stray electric and magnetic fields: use $m_F \neq 0$ states, bias fields
- Collisions: require $\delta \rho \approx 10^{-3} \Rightarrow$ adiabatic passage
- Light shifts: require temporal intensity stability < 10⁻³, spatial intensity stability < 10⁻⁸ over a few μm
- Knowledge of atom-surface separation: $\delta r \ge 1$ nm (surface roughness, wave front distortion)

Noise and Systematics I

Phase coherence of the Raman lasers:

Multiplication of ultra stable quartz BVA $\sigma_y = 10^{-13} \Rightarrow \sigma_{\phi} \sim 1 \text{ mrad } @ \text{ T} = 0.1 \text{ s} \Rightarrow \text{O.K.}$

• Vibrations:

Passive Isolation (MINUS K) $\rightarrow dg/g \sim 10^{-8} @ 0.1 s \Rightarrow O.K.$

• Knowledge of mg/h: $\leq 10^{-8} \Rightarrow O.K.$

• Light shifts $(3 E_r)$:

- Contribution to ω_{eg} : differential light shift ~ 10^{-5} U_L
- \rightarrow Control spatial/temporal intensity variation to 10⁻³
- Contribution to U_m : spatial variation < 10^{-8}
- \rightarrow Control of the spatial variation close to the surface ? Scattering ...

Noise and Systematics II

Collisions: Large waist – low density 10¹⁰ at/cm³ Collision phase shift 7 10⁻² rad Control of the density at the 10⁻³ level ⇒ Adiabatic passage I,n> <liI,n>

- Dielectric mirror = insulating surface \rightarrow spurious charges
- Possibility to control using additional E and B fields (cf Cornell 2007)

• Knowledge of atom – surface separation:

- limited to \geq 1 nm (wave-fronts, surface roughness,)
- limiting factor for QED measurement, O.K. for search for new physics

Search for new interactions

- Searching for new interactions requires control of the QED potential at or below the 10⁻⁴ Hz level.
- Two stage experiment:
- 1. Calculate and correct (possible at about the % level) and place atoms sufficiently far from the surface (QED < 10^{-2} Hz) \Rightarrow explore $\lambda \approx 10 \ \mu$ m
- 2. Differential measurement between ⁸⁵Rb and ⁸⁷Rb isotopes \Rightarrow explore $\lambda \approx 0.2$ to 10 μ m

Potential for a gain of about **3 orders of magnitude** Qualitatively different experiment

Conclusion

• QED measurement (Casimir–Polder, Vacuum fluctuations)

- Limited by δL at short distances, by $\delta(\Delta \phi)$ at large distances
- 10⁻³ measurement (2 orders of magnitude improvement) seems feasible
- Many possibilities to explore phenomenology (internal states, distance, temperature...)

• Search for new short range interactions related to gravity:

- 3 to 4 orders of magnitude improvement seems feasible
- Explore large range of λ (two stage experiment)

• General:

- Complementary from previous experiments in this field
- Well supported by existing technology and know-how in atomic physics and metrology.
- Many parameters to change $(P_{trap}, \lambda_{trap}, r, L, ...)$
- Choice of surface material is crucial (stray fields)
- Other atoms fermionic isotopes

The SAGAS Project P. Wolf on behalf of the SAGAS collaboration

peter.wolf@obspm.fr

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

(Search for Anomalous Gravitation with Atomic Sensors) arXiv: 0711.0304, (2008); Exp. Astr. 23, 651, (2009)

Quantum Physics Exploring Gravity in the Outer Solar System

> 70 participants from:	France, Germany, Great Britain, Italy, Portugal, Austria,
	Canada, USA, Australia

Main contributors:

Science Objectives: O. Bertolami, A. Fienga, P. Gil, J. Laskar, J. Páramos, S. Reynaud,
F. Roques, S. Turyshev, P. Wolf.
Accelerometer: E. Rasel, A. Landragin, G. Tino.
Clock: P. Gill, E. Peik, P. Lemonde.
Optical Link: A. Clairon, P. Wolf, E. Samain.
Laser Sources: P. Cancio, P. De Natale, M. De Rosa, G. Galzerano, G. Giusfredi, M.
Inguscio, P. Laporta, A. Toncelli, M. Tonelli.
Spacecraft: A. Rathke, C. Jentsch.
Mission profile: A. Rathke, D. Izzo.

SAGAS: Overview

Payload:

- 1. Cold atom absolute accelerometer, 3 axis measurement of local non-gravitational acceleration.
- 2. Optical atomic clock, absolute frequency measurement (local proper time).
- 3. Laser link (frequency comparison + Doppler for navigation).

Trajectory:

- Jupiter flyby and gravity assist (\approx 3 years after launch).
- Reach distance of ≈39 AU (15 yrs nominal) to ≈53 AU (20 yrs, extended).

Measurements:

- Gravitational trajectory of test body (S/C): using Doppler ranging and correcting for non-gravitational forces using accelerometer measurements.
- *Gravitational frequency shift of local proper time:* using clock and laser link to ground clocks for frequency comparison.
- \Rightarrow test body trajectory + light trajectory + proper time
 - = Measure all aspects of gravity !

Science Objectives: Overview

Science Objective	Expected Result	Comments		
Test of Universal Redshift	1x10 ⁻⁹ of GR prediction	10⁵ gain on present		
Null Redshift Test	1x10⁻⁹ of GR prediction	10^3 gain		
Test of Lorentz Invariance	$3x10^{-9}$ to $5x10^{-11}$	10^2 to 10^4 gain		
	(IS or "time dilation" test)	fct. of trajectory		
PPN test	$\delta(\gamma) \leq 2 \mathbf{x} 10^{-7}$	10 ² gain		
		may be improved by orbit		
		modelling		
Large Scale Gravity	- Fill exp. data gap for scale	Different observation types and		
	dependent modif. of GR	large range of distances will allow		
	- Identify and measure PA to $< 1\%$	detailed "map" of large scale		
	per year of data	gravity		
Kuiper Belt (KB) Total Mass	$\delta \! M_{ m KB} \leq$ 0.03 $M_{ m E}$	Dep. on mass distribution and		
		correlation of clock meas.		
KB Mass Distribution	Discriminate between different	Will contribute significantly to		
	common candidates	solution of the "KB mass deficit"		
		problem		
Individual KB Objects (KBOs)	Measure $M_{\rm KBO}$ at $\approx 10\%$	Depending on distance of closest		
		approach		
Planetary Gravity	-Jupiter Gravity at $\leq 10^{-10}$	10 ² gain on present for Jupiter		
	-Study Jupiter and its moons	idem for other planet in case of 2 nd		
		fly-by		
Variation of Fund. Const.	$\delta \alpha \alpha \leq (2 \times 10^{-9}) \delta (GM/rc^2)$	250 -fold gain on present		
Upper limit on Grav. Waves	$\Omega_{\rm h} \le 10^{-5}$ @ 10^{-5} Hz	10³ gain @ 10^{-6} to 10^{-3} Hz		
	$h \le 10^{-18}$ @ 10^{-6} to 10^{-3} Hz	Integration over one year		
Technology Development	Develops S/C and ground segment technologies for wide use in future			
	missions (interplanetary timing, navigation, broadband			
	communication,)			

Large scale gravity test example

 Pioneer 10 and 11 data show unexplained almost constant Doppler rate (a_P~ (8.7±1.3)x10⁻¹⁰ m/s²) between 20 AU and 70 AU.

Some conventional and "new physics" hypotheses (non exhaustive):

- C1: Non-gravitational acceleration (drag, thermal, etc...)
- C2: Additional Newtonian potential (Kuiper belt, etc...)
- C3: Effect on Pioneer Doppler (DSN, ionosphere, troposphere, etc...) that also effects SAGAS ranging (sum of up and down link) but not the time transfer (difference of up and down link).
- C4: Effect on Pioneer Doppler that has no effect on SAGAS ranging or time transfer (eg. ionosphere $\propto 1/f^2$)
- P1: Modification of the metric component g_{00} ("first sector" in Jaekel & Reynaud, Moffat...) P2: Modification of the metric component $g_{00}g_{rr}$ ("second sector" in Jaekel & Reynaud)

Large scale gravity test example

Orders of magnitude of measurable effect with 1 year of data, satellite on radial trajectory, v~13 km/s, r ~30 AU, a_p ~8.7 10⁻¹⁰ m/s² :

Observable uncertainty	Acc. / ms ⁻² (5 10 ⁻¹²)	Clock (1 10 ⁻¹⁷)	Doppler (<10 ⁻¹³) ←	Accelerometer limitation
C1	8.7 10 ⁻¹⁰	4 10 ⁻¹⁵	2 10 ⁻¹⁰	
C2	-	5 10 ⁻¹⁴	2 10 ⁻¹⁰	
C 3	-	-	2 10 ⁻¹⁰	
C4	-	-	-	"-" = no anomaly effect
P1	-	5 10 ⁻¹⁴	2 10 ⁻¹⁰	
P2	-	-9 10 ⁻¹⁴	2 10 ⁻¹⁰	

- All instruments show sensitivity of 10^{-3} or better \Rightarrow measurement of "fine structure" and evolution with **r** and *t*, ie. rich testing ground for theories.
- Complementary instruments allow good discrimination between hypotheses
- C2 and P1 are phenomenologically identical (identical modification of Newtonian part of metric in g_{00}) but precise measurement will allow "fine tuning"
- Longer data acquisition will improve most numbers

Example: Cosmological GW background

Solar System Exploration: Kuiper Belt

Provided by O. Bertolami et al.

Kuiper belt mass distribution models, with $M_{\rm KP} = 0.3 M_{\rm E}$

- Remnant of disc from which giant planets formed.
- Mass deficit problem (100 times less than expected from in situ formation of KB objects).
- Acceleration sensitivity insufficient to distinguish between models ($\propto 1/r^2$).
- But clock well adapted for measurement of diffuse, large mass distributions ($\propto 1/r$).
- Depending on distribution SAGAS can determine $M_{\rm KB}$ with $\delta M_{\rm KB} \approx 10^{-2} M_{\rm E}$ to $10^{-3} M_{\rm E}$

Payload: SAGAS requirements and state of the art

Accelerometer:

• Aim at $\sqrt{S_a(f)} = 1.3 \ 10^{-9} \text{ m/s}^2 \text{ Hz}^{-1/2}$ noise and absolute accuracy of 5 10^{-12} m/s^2 • Based to a large extent on PHARAO technology and HYPER study.

Clock:

- Single trapped ion optical clock.
- Aim at $1 \ 10^{-14} / \sqrt{\tau}$ stability and $\leq 1 \ 10^{-17}$ accuracy
- Best ground trapped ion optical clocks show $\sigma_y(\tau) = 3 \ 10^{-15} / \sqrt{\tau}$ and $\delta y \le 9 \ 10^{-18}$.

Challenge for SAGAS is not performance but space qualification and reliability.

Deep Space Optical Link (DOLL)

- Independent up and down link.
- Heterodyne frequency measurement with respect to local laser.
- Combine on board and ground measurements (asynchronous) for clock comparison (= difference) or Doppler (= sum).
- 1 W emission, 40 cm telescope on S/C (LISA),
 1.5 m on ground (LLR).
- 22000 detected photons/s @ 30 AU. (LLR < 1 photon/s).
- Takes full advantage of available highly stable and accurate clock laser and RF reference.
- Technological challenges are pointing requirements (0.3"), laser availability and reliability, atmospheric turbulence, ...
- Advantages: performance, data rate, reduced sensitivity to AM noise and stray light, ...
- Free space version of existing fibre links

Present Activities

R&D (ESA, CNES, DLR, research labs, ...):

- Optical clocks, laser cavities, femtosecond combs, for space applications
- Atomic accelerometers (free fall tests, PHARAO heritage, ...)

Optical Link:

 Mini-DOLL: SYRTE-OCA project, CNES support. Coherent CW optical link from ground telescope ↔ LEO satellite to demonstrate principle and to study noise contribution from atmosphere and stray light.

Turbulence contribution should be OK!

CONCLUSION

- There are good theoretical and observational reasons to expect a scale dependent modification of GR
- Such modifications are least constrained at very small and very large scale
- FORCA-G allows exploring gravity at very short range with improved sensitivity and using complementary physics to existing experiments
- SAGAS offers possibility of complete characterisation of gravitation at the largest possible scale in our "laboratory"
 Both experiments hold potential for a major discovery in fundamental physics and major contribution to constraining theoretical models.