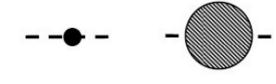
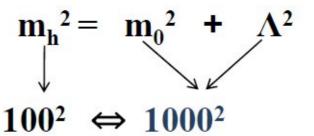
Measurement of Little Higgs Parameters at International Linear Collider

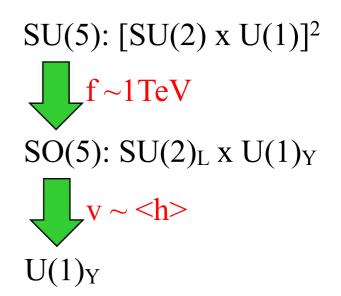

'10 2/1 Y. Takubo (Tohoku U.)

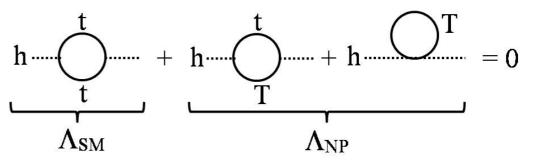

E. Asakawa(Meiji-gakuin U.), K. Fujii(KEK),T. Kusano(Tohoku U.), S. Matsumoto(Toyama U.),R. Sasaki(Tohoku U.), H. Yamamoto (Tohoku U.)

Little hierarchy problem

There are two predictions of the energy scale for new physics (Λ).

- $\Lambda < 1$ TeV : <10% fine tuning of Higgs mass.
- $\Lambda > 10$ TeV : EW precision measurements
 - > The global fit of the EW parameters. $(\Gamma_Z, M_W/M_Z, \sin^2\theta_W, ...)$


 \rightarrow There is a discrepancy between two predictions.


Some physics models are proposed to solve little hierarchy problem.

→ Little Higgs model (with T-parity)

Little Higgs mechanism

- Higgs is a pseudo NG boson of a global symmetry of SU(5) .
- The symmetry breaks to SO(5) at $\Lambda \sim 10$ TeV.
 - > VEV: $f \sim 1 \text{TeV}$
 - > $[SU(2)_L \times U(1)_Y]$ is a subgroup of SO(5).
- The little Higgs partners contribute to cancel quadratic divergent term of M_h at 1-loop level.
 - > The new physics at 1 TeV is not necessary.
- \rightarrow Little hierarchy problem can be solved.

Importance of heavy gauge bosons

Heavy gauge bosons

• The heavy gauge bosons appears as the little Higgs partners of SM gauge bosons.

 $> \gamma, Z, W \leftrightarrow A_H, Z_H, W_H$

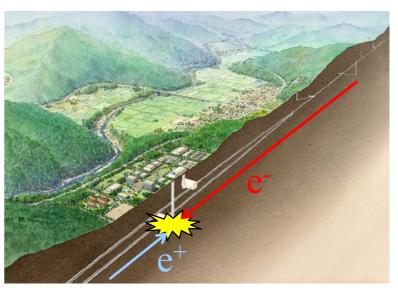
> The masses have information of VEV(f).

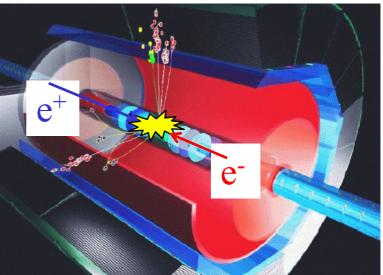
• A_H becomes stable, requiring T-parity.

> A_H is a dark matter candidate.

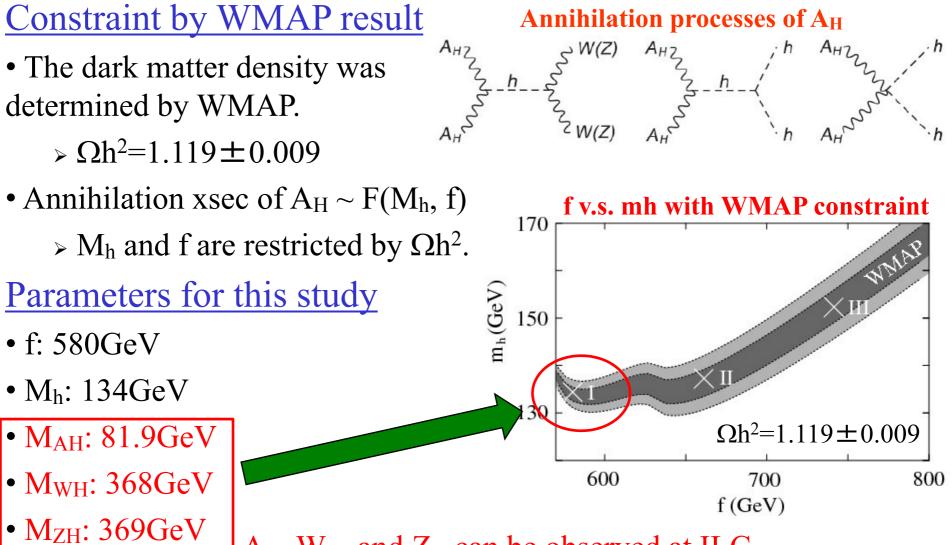
 \rightarrow VEV and abundance of the dark matter can be evaluated by measurement of heavy gauge bosons.

Sensitivity of ILC to the heavy gauge bosons was studied.



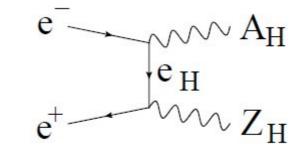

International Linear Collider

International Linear Collider (ILC)


- The future linear accelerator for e⁺ and e⁻.
 - ▹ Total length: ~30km
- E_{CM}: 500 GeV in the first stage
 - > 1TeV in the second stage
- Luminosity: $2 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
- Higgs and new physics will be studied at clean environment.
- R&D has been continued to establish the technology by 2012.

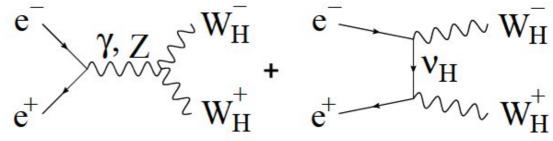
The simulation study was done for E_{CM} = 500GeV and 1TeV.

Parameter choice for simulation study


 A_H , W_H , and Z_H can be observed at ILC.

Analysis modes

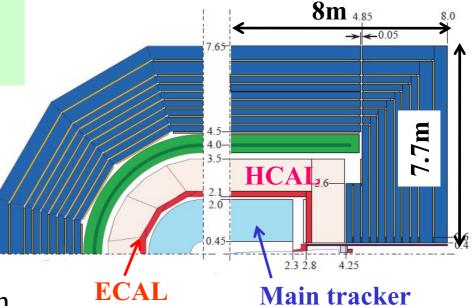
According to the beam energy at ILC, two analysis modes were selected.


Analysis modes

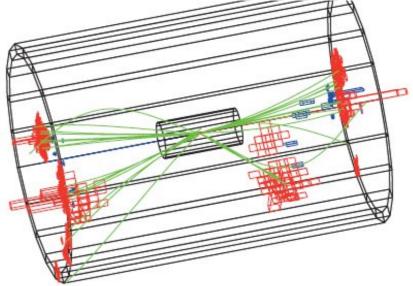
- $A_H + Z_H$ @ $E_{CM} = 500 \text{ GeV}$
 - > xsec: 1.91 fb
 - $\succ Z_{\rm H} \bigstar {\rm H} + {\rm A}_{\rm H}$
 - $> M_{AH} + M_{ZH} = 450.9 \text{ GeV}$

- $W_{H}^{+} + W_{H}^{-}$ @ $E_{CM} = 1 \text{ TeV}$
 - > xsec: 277 fb
 - $\succ W_H \rightarrow W + A_H$

 $> M_{WH} + M_{WH} = 736 \text{ GeV}$



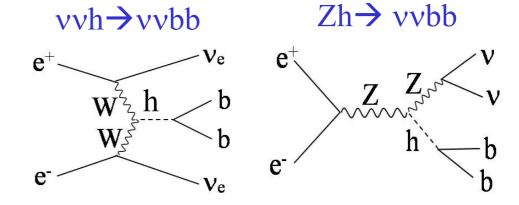
Simulation study


Simulation condition

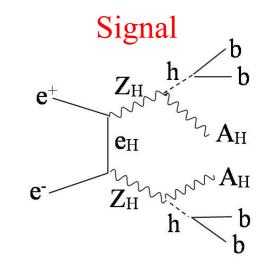
- Event generator
 - > Signal: Physsim
 - > BG: MadGraph and Physsim
- ISR, FSR, beamstrahlung, and beam energy spread:
 - > E_{CM} =500GeV: not considered.
 - > E_{CM} =1TeV: considered.
- The fast-simulator for GLD was used.
 - > The detector performance is included properly.
 - > GLD was now re-organized as ILD.

GLD detector concept

Event display of a W_HW_H event



A_HZ_H at E_{CM}=500GeV


Signal v.s. B.G. at E_{CM}=500GeV

Signal v.s. BG

- Signal: $A_H Z_H \rightarrow A_H A_H hh (h \rightarrow bb)$
 - > Xsec: 1.05fb
 - > BR($h\rightarrow$ bb): 55.3% for Mh=134GeV
- BG: vvh and Zh are serious BG.
 - > vvh→vvbb: 34fb
 - > Zh→ vvbb: 5.57fb
- The selection cut was applied.
 - > 100GeV< Mh <140GeV
 - > misspt > 80GeV/c
 - b-tagging

The number of events after the selection cut was checked.

Event selection at E_{CM} =500GeV

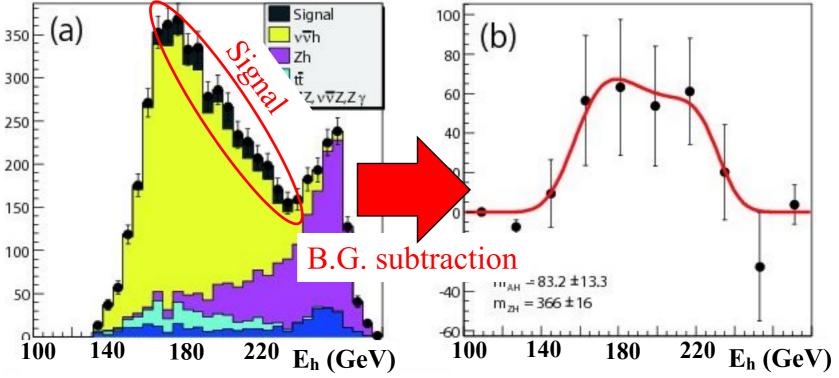
Event selection

- Assumption of b-tag performance
 - > 80% efficiency for b-jet
 - > 10% mis-identification of light quarks
- Signal significance: 3.7

\rightarrow We will obtain the indication of new physics at E_{CM}=500GeV.

Process		xsec(fb)	No cut 100 <m<sub>h<140</m<sub>		$P_{\rm t}^{\rm miss} > 80$	b-tag	
$A_H Z_H$ -	+ 1	$A_H A_H b \bar{b}$	1.05	525	488	425	272
γZ –		$\gamma b \overline{b}$	1,200	600,000	19,296	<mark>7</mark> 0	45
tt –	→ V	$V^+W^-b\overline{b}$	496	248,000	859	413	264
$\nu\nu Z$ –	>	$\nu\nu b\bar{b}$	44.3	22,150	635	261	167
$\nu \nu h$ –	-	$\nu\nu b\bar{b}$	34.0	17,000	15,170	5,247	3,359
ZZ –	``	$\nu\nu b\bar{b}$	25.5	12,750	404	277	178
Zh -		ννbb	5.57	2,785	2,390	2,196	1,406
Total				860,105	38,727	8,464	5,419

Determination of $A_H \& Z_H$ mass


Masses of A_H and Z_H are determined by the edge of E_h distribution.

- M_{AH} : 83.2 ± 13.3 GeV
- M_{ZH} : 366.0 ± 16.0 GeV

• M_{AH} : 16.2% • M_{ZH} : 4.3%

Masses of A_H and Z_H might be determined at E_{CM} =500GeV.

Measurement accuracy

W_HW_H at E_{CM}=1TeV

Event selection at $E_{CM}=1$ TeV

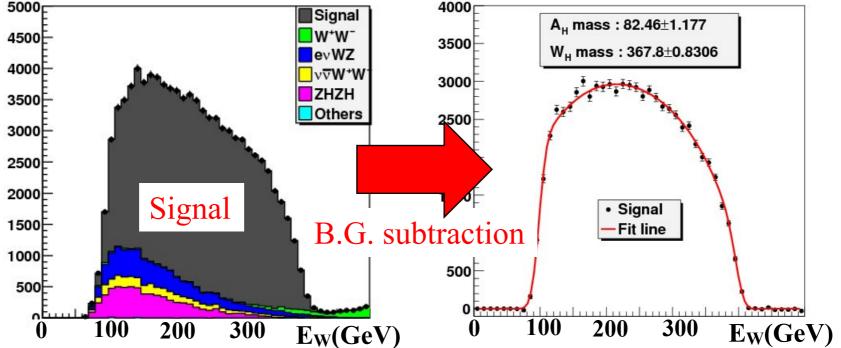
- Xsec of $W_H W_H$ is very large, comparing to the SM background.
- The hadronic decay modes of W was selected as the signal.

 $\succ W_H W_H \rightarrow A_H A_H W W \rightarrow A_H A_H q q q q$

• SN of 4.2 was obtained with simple selection cuts.

 \rightarrow The confident signal significance will be obtained at E_{CM}=1TeV.

	Xsec(fb)	No cut	Ew<500GeV	χ²<26	missp _T >84GeV
$W_H W_H \rightarrow A_H A_H q q q q$	106.5	53,258	53,045	43,171	37,560
WW→qqqq	1773.5	886,770	757,047	271,409	306
eeWW→eeqqqq	464.9	282,500	269,075	150,957	23
evWZ→evqqqq	25.5	12,770	12,271	7,033	3,696
$Z_H Z_H \rightarrow A_H A_H q q q q$	99.5	49,741	49,609	4,346	3,351
vvWW→vvqqqq	6.5	3,227	3,203	2,373	1,486
Total		1,235,008	1,091,205	436,118	8,862


Determination of A_H & W_H mass

Masses of A_H and W_H are determined by the edge of E_h distribution.

- M_{AH} : 82.46 ± 1.18 GeV
- M_{WH} : 367.8 ± 0.83 GeV

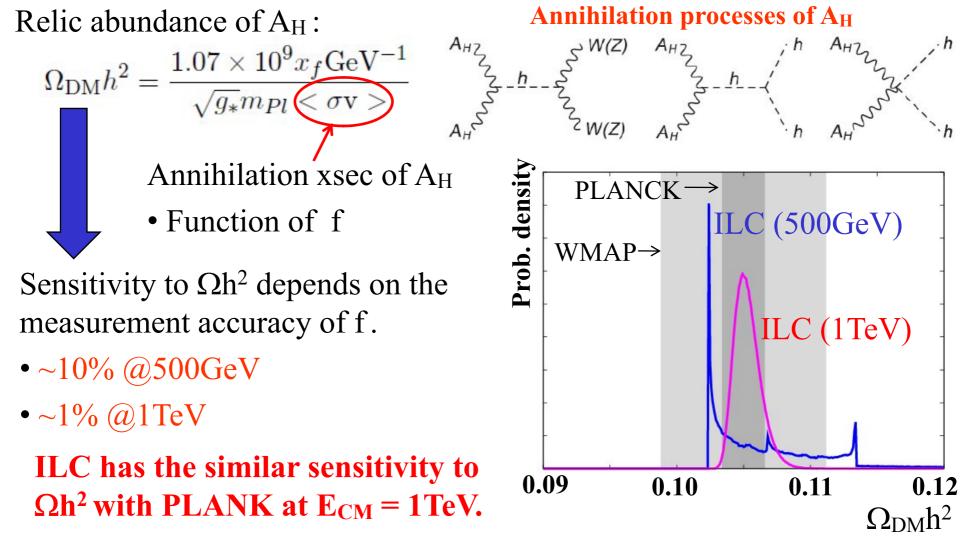
- Measurement accuracy $\bullet M_{AH}$: 1.4%
- M_{WH} : 0.2%
- Masses of $\mathbf{A}_{\mathbf{H}}$ and $\mathbf{W}_{\mathbf{H}}$ can be determined

with 1% level at E_{CM}=1TeV.


Determination of VEV & Ωh^2

Sensitivity to VEV(f)

Sensitivity to VEV(f) was estimated by measurement accuracy of the heavy gauge bosons.


• $M_{AH} \sim sqrt(0.2)$ g' f, $M_{ZH, WH} \sim g$ f

• $f = 576.0 \pm 25.0 (4.3\%)$ @ 500GeV • $f = 579.8 \pm 1.1 (0.2\%)$ @ 1TeV

Sensitivity to relic abundance

Finally, sensitivity to the relic abundance was investigated.

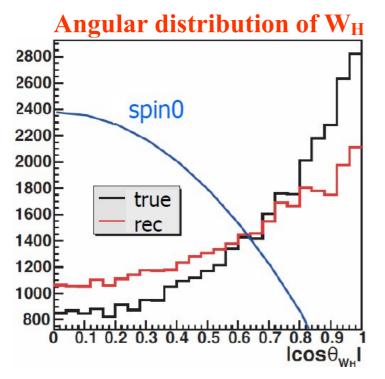
Summary

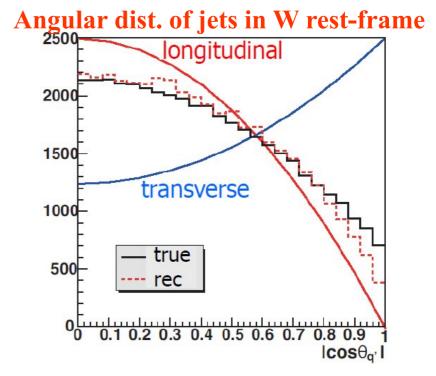
• Little Higgs model with T-parity gives solution for the little hierarchy problem.

- ILC has excellent sensitivity to the Little Higgs parameters.
 - > M_{AH}: 16.2%, M_{ZH}: 4.3% @ 500 GeV
 - > M_{AH}: 1.4%, M_{WH}: 0.2% @ 1TeV
 - > VEV (f): 4.3% @500GeV, 0.2% @1TeV
- \bullet The relic abundance of $A_{\rm H}$ can be determined with the similar sensitivity of PLANK.

>~10% @ 500GeV, ~1% @ 1TeV

- The paper on this study was published by PRD.
 - > Phys. Rev. D79, 075013 (2009)/arXiv:0901.1081[hep-ph]

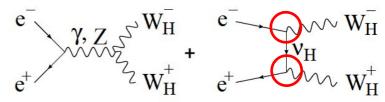

Spin of $W_{\rm H}$ & helicity of W

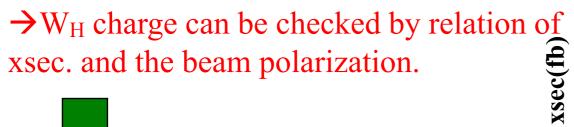

• The angular distribution of W_H is different from that of spin-0.

 \rightarrow We can distinguish from spin-0 particles.

• Angular distribution of jets in W rest-frame shows the contribution of longitudinal component.

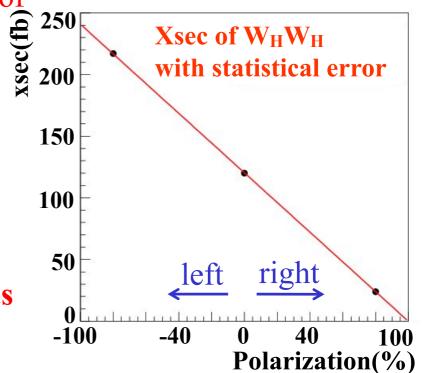
 \rightarrow The coupling is confirmed to arise from the symmetry breaking.





Gauge charge of $W_{\rm H}$

W_H coupling


- W_H has SU(2) charge without U(1) charge.
- At high energy, Z~W³ almost couples to left-handed.

Zero xsec. for fully right-handed polarization can be observed.

→ At ILC, we can confirm that W_H has no U(1) charge.

