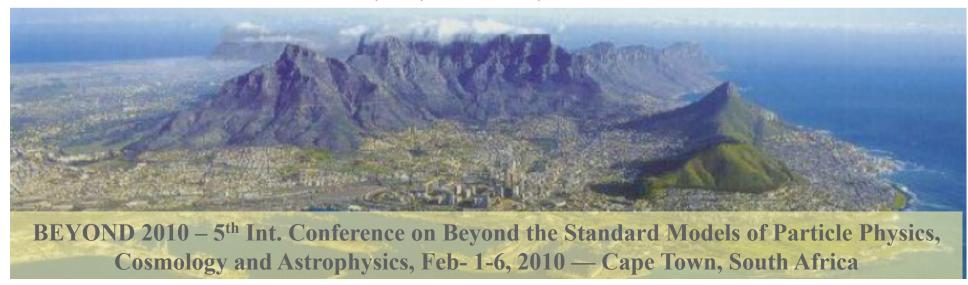
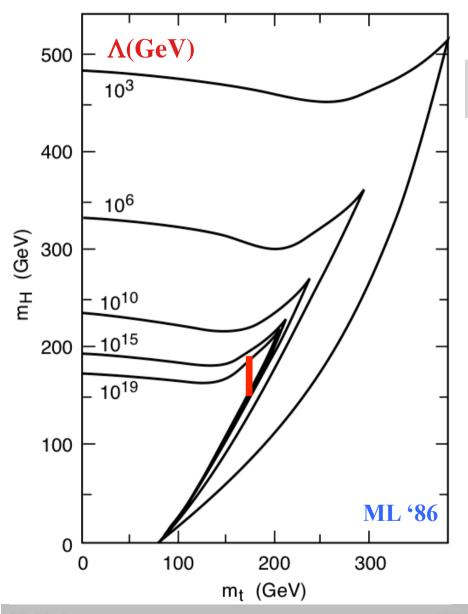
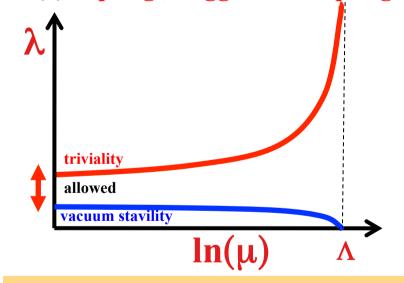
SUSY now or never



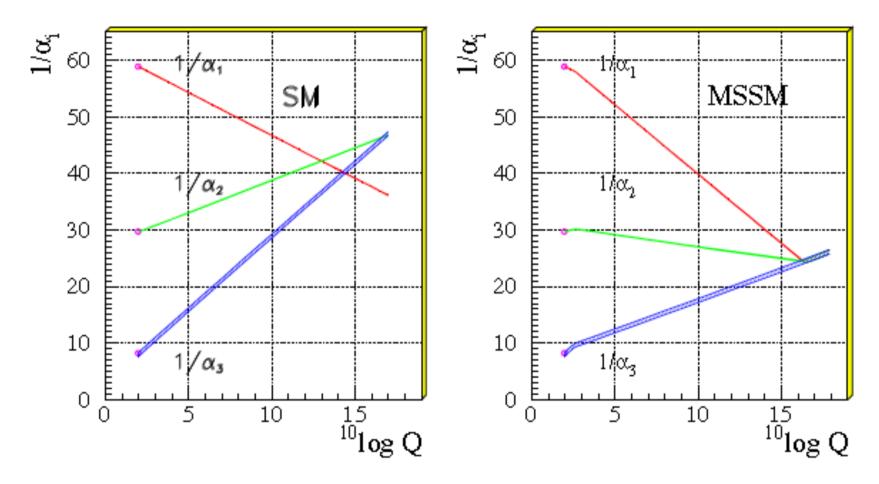
M. Lindner


Max-Planck-Institut für Kernphysik, Heidelberg

- → J. Kopp, ML, V. Niro, T. Underwood, arxiv:0909.2653
- → M. Holthausen, ML, M. Schmidt, arxiv:0911.0710



Why we must extend the SM: Triviality


 $125 \text{ GeV} < m_H < 174 \text{ GeV}$

SM does not exist w/o embedding
- U(1) copling, Higgs self-coupling

- → RGE arguments seem to work
- → we need an embedding

Weak Scale SUSY works very good

SM: couplings do not unify

MSSM: perfect! → luck? → other models?

EW Symmetry Breaking Options

EW symmetry breaking scenarios:

- Just SM up to high scale
 hierarchy problems unsolved
 - a) why is $v = 246 \text{ GeV} << M_{Planck} = 10^{19} \text{ GeV}$?
 - b) how can $v \ll M_{planck}$ be stabelized?
- Dynamical symmetry breaking → ~ effective Higgs
- Protective symmetry Supersymmetry

- → new Physics in TeV range...
- → LHC will see new physics ... but what if not?

alternative scenarios:

- → SUSY later
- **→** other protective symmetry

Alternative Routes

- What the LHC could find beyond what is known...
 - nothing unitarity violation! hidden stuff
 - just a SM Higgs!
 - extension w/o immediate solution of the hierarchy problem

- **→** gauge extensions which are super-symmetrized later
 - e.g. left-right symmetric extensions
 - add SUSY at Λ_{LR} or close by \rightarrow ... to avoid hierarchies...
 - scenarios where one scalar (=SM Higgs) is lighter
 - unification should occur
 - igstar above proton decay scale $au_p \sim rac{M_{
 m GUT}^4}{m_{
 m m}^5}$
 - \rightarrow below or at M_{Pl} unification at M_{Pl} would be even nice...

Left-Right Extensions

all quarks and leptons fit nicely into L, R doublets

$$Q(3,2,1,\frac{1}{3}) = \begin{pmatrix} u \\ d \end{pmatrix}$$

$$Q^{c}(3^{*}, 1, 2, -\frac{1}{3}) = \begin{pmatrix} d^{c} \\ -u^{c} \end{pmatrix}$$

$$L(1,2,1,-1) = \binom{\nu_{\varepsilon}}{e}$$

$$L^c(1,1,2,1) = \begin{pmatrix} e \\ -\nu_e \end{pmatrix}$$

symmetry breaking
$$SU(2)_R \times U(1)_{B-L} \xrightarrow{M_{LR}} U(1)_Y$$

nice: U(1) carries B-L charge

scalars for SB: $\Delta(1,3,1,2)$

and $\Delta^{c}(1,1,3,-2)$

 $\Phi(1,2,2,0)$ \rightarrow non-SUSY LR model with triplets

add SUSY
$$\bar{\Delta}(1,3,1,-2)$$
 and $\bar{\Delta}^c(1,1,3,2)$

$$\bar{\Delta}^{c}(1, 1, 3, 2)$$

$$\rightarrow$$
superfields Φ_1 and Φ_2

R-parity cons. S(1,1,1,0) \longrightarrow minimal SUSY LR model

Other Models

S replaced by triplets

$$\Omega(1, 3, 1, 0)$$

$$\Omega(1,3,1,0)$$
 and $\Omega^{c}(1,1,3,0)$

→ non-minimal SUSY LR model with triplets

$$\rightarrow$$
 staged SB $SU(2)_R \times U(1)_{B-L} \xrightarrow{M_{LR}} U(1)_R \times U(1)_{B-L} \xrightarrow{M_{B-L}} U(1)_Y$

Pati-Salam group

$$SU(2)_L \times SU(2)_R \times SU(4)$$

 $SU(2)_L \times SU(2)_R \times SU(4)$ \rightarrow SUSY Pati-Salam model

$$\xrightarrow{M_{\rm PS}} SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$$

$$\xrightarrow{M_{\rm LR}} SU(3)_c \times SU(2)_L \times U(1)_Y,$$

matter Higges

$$\psi(2,1,4)$$

$$\psi(2,1,4)$$
 and $\psi^c(1,2,4^*)$

$$\Phi(2,2,1)$$

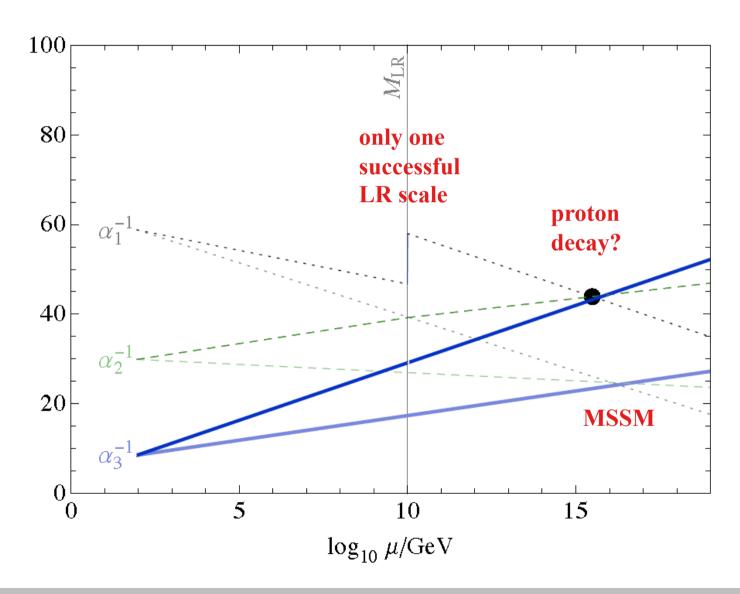
$$\Phi(2,2,1)$$
 and $\Phi(2,2,15)$

RGEs

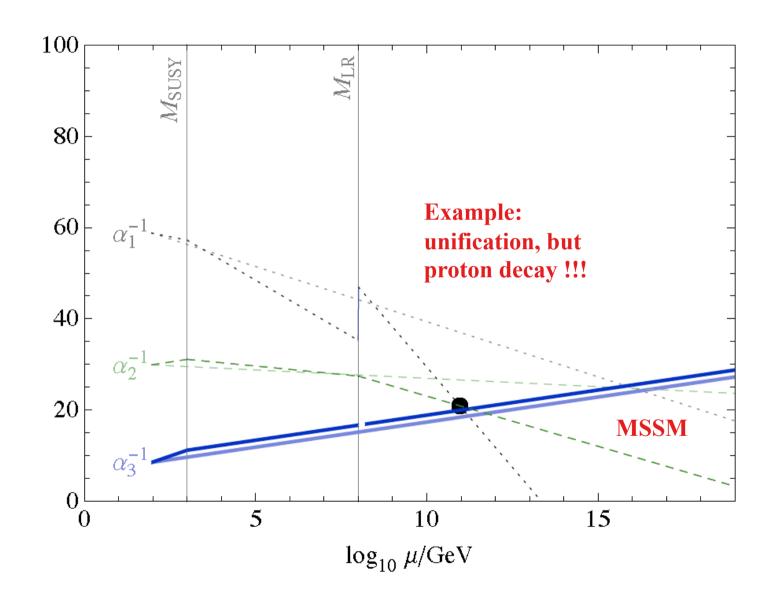
$$16\pi^2 \frac{dg_i(t)}{dt} = b_i [g_i(t)]^3 \Rightarrow \alpha_i^{-1}(t) = \alpha_i^{-1}(t_0) - \frac{1}{2\pi} b_i (t - t_0)$$

$$b_i = \sum_R s(R) T_i(R) - \frac{11}{3} C_{2i}. \quad \text{(non-SUSY models)}$$

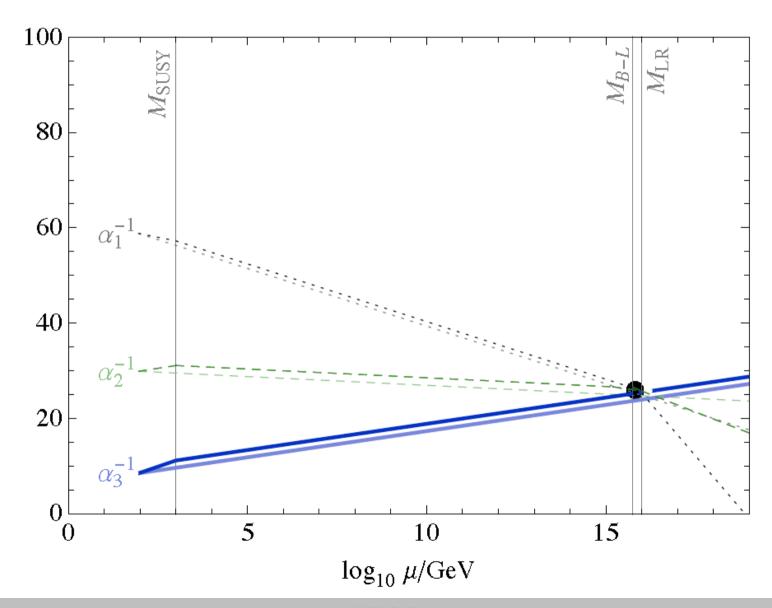
$$b_i = \sum_R T_i(R) - 3 C_{2i}. \quad \text{(SUSY models)}$$

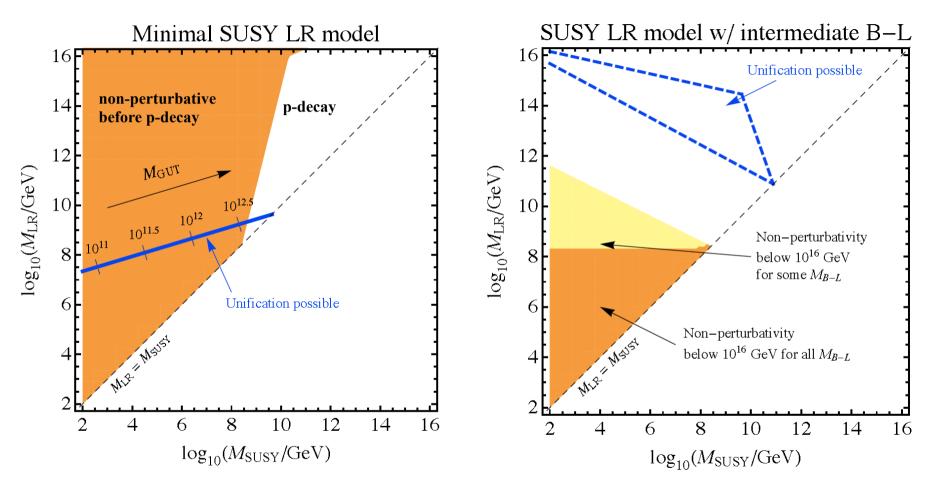

1-loop, no thresholds, no detailed spectrum

GUT - U(1) normalization: SM, MSSM→GUT =20/3 LR=8/3

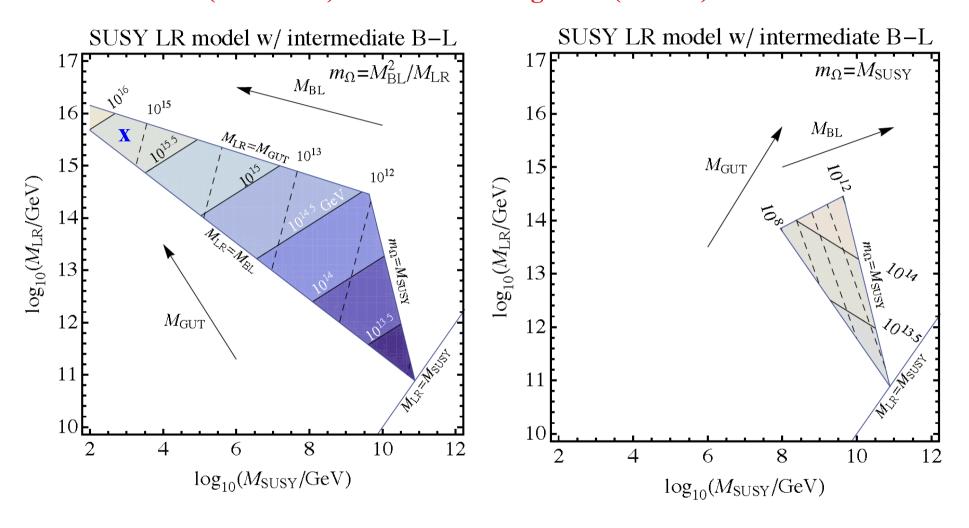

→ matching at LR-scale

$$\alpha_{1,LR}(M_{LR}) = \frac{2}{5} \frac{\alpha_{1,SM}(M_{LR}) \alpha_2(M_{LR})}{\alpha_2(M_{LR}) - \frac{3}{5}\alpha_{1,SM}(M_{LR})}$$

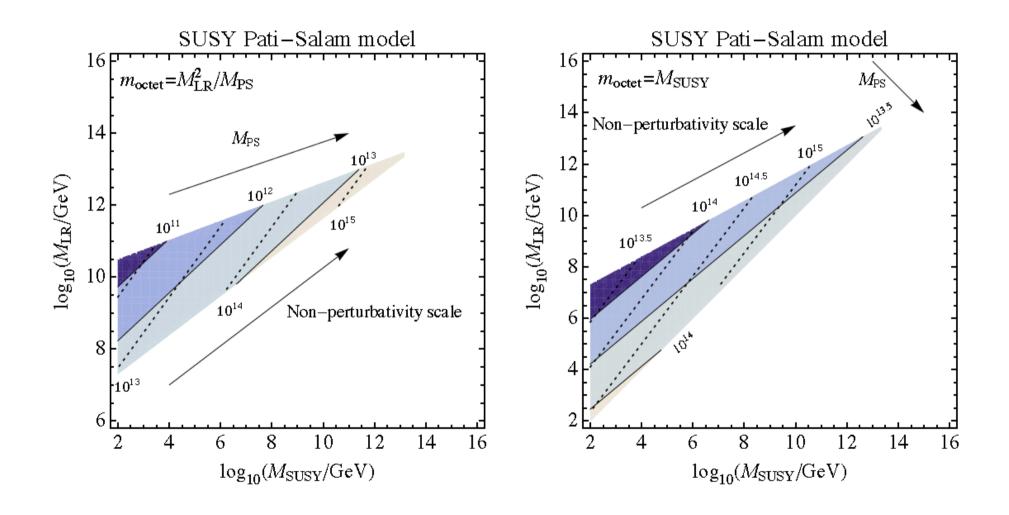

Non-SUSY LR model with Higgs Triplets


Minimal SUSY-LR MOdel

SUSY-LR Model with intermediate B-L



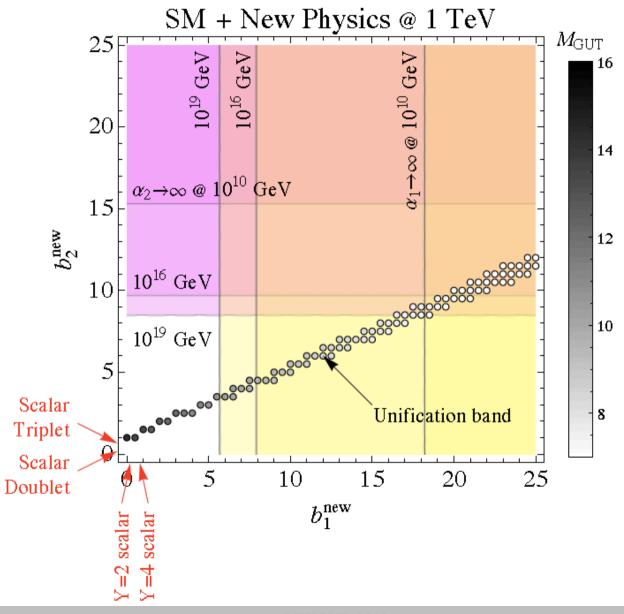
Coupling Unification & Perturbativity


- **→** no low scale solutions
- → solutions: MSSM + intermediate B-L + late LR extension

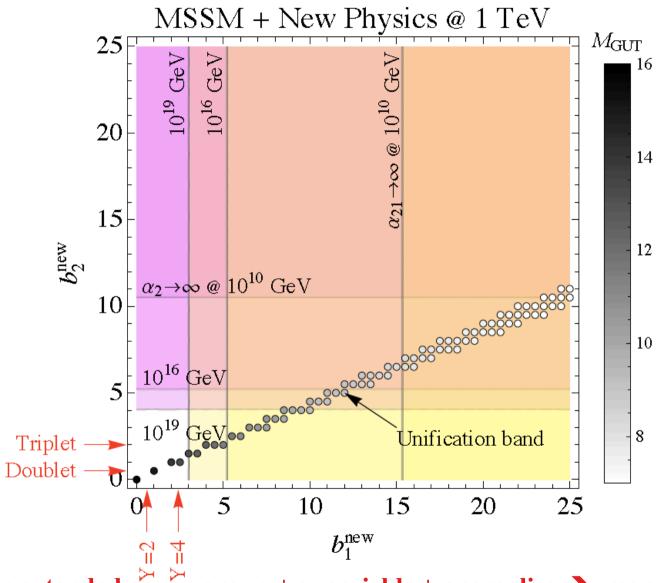
GUT scale (solid lines) and B-L breaking scale (dashed)

proton decay \rightarrow only highes scales \rightarrow low SUSY scale and high LR scale

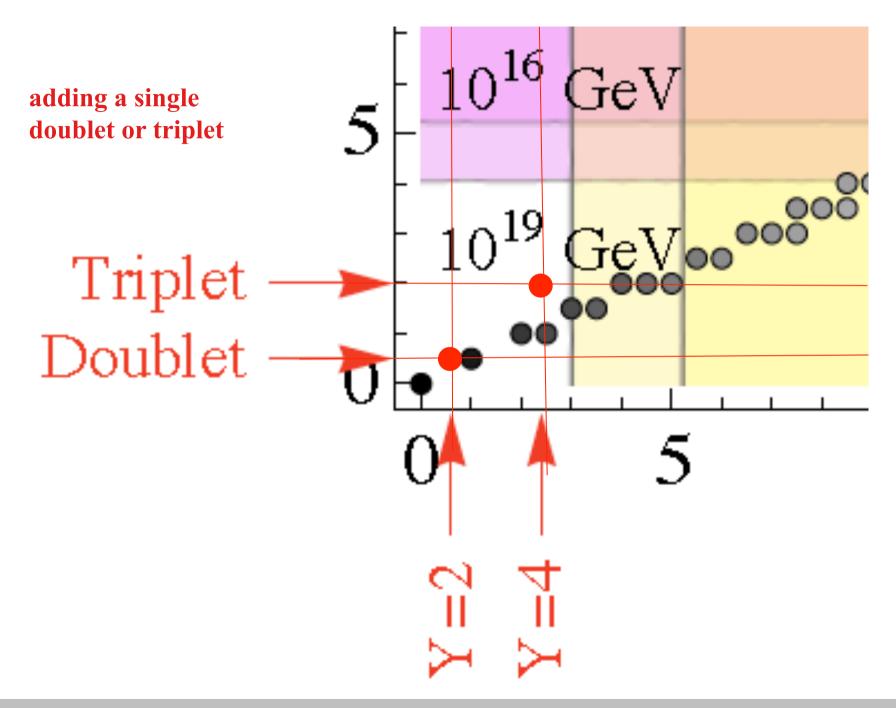
PS scale (solid lines) and non-perturbativity (dashed)



Contributions of arbitrary new Particles


MSSM rep.	$b_1^{ m new}$	$b_2^{ m new}$	$b_{\mathrm{S}}^{\mathrm{new}}$
(Y, 1, 1)	$0.15Y^{2}$	0	0
(Y, 2, 1)	$0.3Y^{2}$	0.5	0
(Y, 3, 1)	$0.45Y^{2}$	2	0
(Y, 4, 1)	$0.6Y^{2}$	5	0
(Y, 5, 1)	$0.75Y^{2}$	10	0
(Y, 6, 1)	$0.9Y^{2}$	17.5	0
(Y, 7, 1)	$1.05Y^{2}$	28	0
(Y, 1, 3)	$0.45Y^{2}$	0	0.5
(Y, 2, 3)	$0.9Y^{2}$	1.5	1
(Y, 3, 3)	$1.35Y^{2}$	6	1.5
(Y, 4, 3)	$1.8Y^{2}$	15	2
(Y, 5, 3)	$2.25Y^{2}$	30	$^{2.5}$
(Y, 6, 3)	$2.7Y^{2}$	52.5	3
(Y, 7, 3)	$3.15Y^{2}$	84	3.5

- numbers for chiral super fields \rightarrow non-SUSY x1/3 or x2/3 for scalars/fermions
- b₁ includes GUT normalization factor 3/20
- new physics at 1 TeV


Perturbativity & Unification w/o SUSY

Perturbativity & Unification with SUSY

→ problem: extended gauge group + superields + anomalies → many particles

Conformal Symmetry & Hierarchy Problem

Are there other protective symmetries...?

→ conformal symmetry

Exact (unbroken) CS

- \rightarrow absence of Λ^2 and $\ln(\Lambda)$ divergences
- **→** no preferred scale

Conformal anomaly

- **→** explicit breaking of CS!
- \rightarrow breaking $\leftarrow \rightarrow \beta$ -functions $\leftarrow \rightarrow \ln(\Lambda)$ divergences
- \rightarrow BUT: Maybe CS still forbids Λ^2 divergences Bardeen, ...

Simplest Realization (under this assumption):

→ Coleman-Weinberg effective potential of SM for $\mu^2=0$

$$V_{eff}$$
 = (μ²=0)Φ² + λΦ⁴ + C Φ⁴ ln(Φ²/Λ²)
with C ← → β-functions ← → ln(Λ)

Realizing this Idea

Standard Model

 \rightarrow does not work: m_H too light and does not exist for m_t >80 GeV

Other realizations

R. Foot, A. Kobakhidze, R. Volkas, 0704.1165 Nicolai, Meissner, 0803.2814

→ M. Holthausen, ML, M. Schmidt, 0911.0710

Conformal LR-extension of SM

- \rightarrow choose suitable particle content \leftarrow \rightarrow breaking of V_{eff}
- **→** use Gildner Weinberg formalism
- \rightarrow symmetry breaking $SU(2)_R \times U(1)_{B-L} \xrightarrow{M_{LR}} U(1)_Y$
- \rightarrow works, but requires some parameter adjustments Λ_{LR} & FCNC \leftarrow \rightarrow Λ_{LR} high enough & SM Higgs must be choosen

Summary

SM extensions with larger gauge groups and low lying SUSY

- breaking of extended symmetries → additional scalars
- SUSY → superpartners of new particles
- anomaly cancellation of superpartners of new scalars → more fields
- **→** many new fields **→** generic feature for many extensions
- drives running couplings bigger (destroys asymptotic freedom)
- often leads to divergent couplings
- especially U(1)
- → extended models with low lying SUSY ←→ hierarchy problem
- systematically problems with perturbativity
- gauge unification
- proton decay
- → low lying SUSY in its minimal form works best
- **→** argument in favour of weak scale SUSY
- → or something else → conformal symmetry?