Can one say SUSY from the window in the sky?

Dmitri Kazakov Joint Institute for Nuclear Research Dubna, Russia

February, 1-7

What is SUSY?

n >

Supersymmetry is a boson-fermion sy First Papers in 1971-1972 that is aimed to unify all forces in gravity within a singe fram

are bised o No evidence in particle physics yet banifestatio colliders and in non-accelerator experiments

February, 1-7

Particle Content of the MSSM

Superfield	Bosons	Fermions	$SU_c(3)$	$SU_L(2)$	$U_{\gamma}(1)$
Gauge					
G^{a}	gluon g ^a	gluino ĝ ^a	8	1	0
V^k	Weak $W^{k}(W^{\pm},Z)$	wino, zino $ ilde{w}^k(ilde{w}^{\pm}, ilde{z})$	1	3	0
V'	Hypercharge $B(\gamma)$	bino $\tilde{b}(\tilde{\gamma})$	1	1	0
Matter			_		
L_i	$\tilde{L}_i = (\tilde{\nu}, \tilde{e})_L$	$\int L_i = (v, e)_L$	1	2	-1
E_i	$\tilde{E}_i = \tilde{e}_R$	$E_i = e_R$	1	1	2
Q_i	$\tilde{Q}_i = (\tilde{u}, \tilde{d})_L$	$Q_i = (u,d)_L$	3	2	1/3
U_i squ	arks $\langle \tilde{U}_i = \tilde{u}_R \rangle$	$ uarks = u_R^c$	3*	1	-4/3
D_i	$ ilde{D}_i = ilde{d}_R$	$D_i = d_R^c$	3*	1	2/3
Higgs					
H_1	$\int H_1$ bio	\tilde{H}_1	1	2	-1
H_2	H_2 H_2	\tilde{H}_2	1	2	1

Soft SUSY Breaking

Soft parameters are equal at <u>Planck</u> (GUT) scale

$$-L_{Soft} = A\{y_{t}Q_{L}H_{2}U_{R} + y_{b}Q_{L}H_{1}D_{R} + y_{L}L_{L}H_{1}E_{R}\} + B\mu H_{1}H_{2}$$
$$+m_{0}^{2}\sum_{i}|\varphi_{i}|^{2} + \frac{1}{2}M_{1/2}\sum_{\alpha}\beta_{\alpha}\beta_{\alpha}$$

Five universal soft parameters: February, 1-7

A, m_0 , $M_{1/2}$, $B \leftrightarrow \tan\beta = v_2 / v_1$ and

Creation and Decay of Superpartners in Cascade Processes @ LHC

Typical SUSY signature: Missing Energy and Transverse Momentum

Background Processes of the SM for creation of Superpartners

February, 1-7

Search for Supersymmetry @ LHC

5 σ reach in jets + $\not L_T$ channel

Reach limits for various channels at 100 fb $^{\rm -1}$

The Lightest Superparticle

		property_	signature
• Gravity mediation	$LSP = \chi_1^0$	stable	jets/leptons $+ \not E_T$
Gauge mediation	LSP = G	stable	$\not E_T$
NI	$\mathbf{SP} = \begin{cases} 0 \\ \chi_1 \end{cases}$	$\chi_1^0 \to \gamma G, h$	G, ZG photons/jets $+ \not E_T$
		${l_R^{\prime 0}} \rightarrow \tau G$	lepton $+ \not E_T$
• <u>Anomaly mediation</u>	$LSP = \begin{cases} \chi_1 \\ \chi_1 \\ \varphi_1 \\ \varphi_1 \\ \varphi_1 \\ \varphi_1 \\ \varphi_1 \end{cases}$	stable stable	lepton $+ \not E_T$
• <u>R-parity violation</u>	LSP is unstab	ole -> SM partic	les
February 1-7	Revond	Rat 2010 Cape Town No.	re decays
	Leyona	Loro, cupe rown Ne	unnoiess double p decay

Cosmological Constraints

Precise cosmological data

 $\Omega h^{2} = 1 \iff \rho = \rho_{crit}$ $\Omega_{vacuum} \approx 73\%$ $\Omega_{DarkMatter} \approx 23 \pm 4\%$ $\Omega_{Baryon} \approx 4\%$

Dark Matter in the Universe:

Supernova Ia explosion
CMBR thermal fluctuations (from WMAP)

Hot DM (not favoured by galaxy formation)

Cold DM (rotation curves of Galaxies)

SUSY

SUSY Dark Matter

Neutralino = SUSY candidate for the cold Dark Matter Neutralino = the Lightest Superparticle (LSP) = WIMP

$$\chi^{0} = N_{1} \gamma^{0} + N_{2} z^{0} + N_{3} H_{1}^{0} + N_{4} H_{2}^{0}$$

Dark Matter Detection

February, 1-7

Why WIMP?

Boltzman Equation

 $\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma \mathbf{v} \rangle (n_{\chi}^2 - n_{\chi,eq}^2), \qquad H = \mathbf{R}/R$ $\Omega_{\chi}h^{2} = \frac{m_{\chi}n_{\chi}}{\rho_{c}} \approx \frac{2 \cdot 10^{-27} \, cm^{3} \, \mathrm{sec}^{-1}}{<\sigma \mathrm{v}>}$

Relic Abundance

 $\Omega_{\gamma}h^2$: 0.113 ± 0.009, v: 300 km / sec

 $\sigma: 10^{-34} cm^2 = 100 pb$

Typical EW x-section

Hubble constant

DM Neutralino Annihilation Final States

e Zly ≈37 gammas \sim 0000000000 0.01010

QuickTime™ and a decompressor are needed to see this picture.

QuickTime[™] and a decompressor are needed to see this picture.

QuickTime™ and a decompressor are needed to see this picture.

February, 1-7

Analysis of EGRET Data in 6 Sky Directions

February, 1-7

Diffuse gamma rays from FERMI

QuickTime™ and a decompressor are needed to see this picture. QuickTime[™] and a decompressor are needed to see this picture.

QuickTime[™] and a decompressor are needed to see this picture.

Fitted Hallo Parameters

Gamma Ray Flux: (< \sigma v > from WMAP)

$$\phi_{\chi}(E,\psi) = \frac{\langle \sigma v \rangle}{4\pi} \sum_{f} \frac{dN_{f}}{dE} b_{f} \int_{line \ of \ sight} B_{l} \frac{1}{2} \frac{\langle \rho_{\chi}^{2} \rangle}{M_{\chi}^{2}} dl_{\psi}$$

$$\rho_{\chi}(\tilde{r}) = \rho_0 \left(\frac{R_0}{\tilde{r}}\right)^{\gamma} \left[\frac{1 + \left(\frac{\tilde{r}}{a}\right)^{\alpha}}{1 + \left(\frac{R_0}{a}\right)^{\alpha}}\right]^{\frac{\gamma - \beta}{\alpha}} + \sum_{n=1}^{N} \rho_n \exp\left(-\frac{\left(\tilde{r}_{gc} - Rn\right)^2}{2\sigma_{R_n}^2} - \frac{\left(z_n\right)^2}{2\sigma_{z_n}^2}\right)$$

Parameter	Value	Parameter	Value
α	2	R_a	4.3 kpc
β	2	$\sigma_{R,a}$	3.4 kpc
γ	0	$\sigma_{z,a}$	0.3 kpc
R_0	$8.5 \ \mathrm{kpc}$	ρ_b	$2.3~{ m GeV~cm^{-3}}$
a	$4 \; \rm kpc$	R_b	$14 \rm \ kpc$
ρ_0	$0.47~{ m GeV~cm^{-3}}$	$\sigma_{R,b}$	2.1 kpc
ρ_a	$3.3~{\rm GeV}~{\rm cm}^{-3}$	$\sigma_{z,b}$	1.3 kpc
b/a	0.9	c/a	0.8

A Ring around the Milky Way The Sun Ghostly Ring Enhancement of rings over 1/r² profile 2 and 7, respectively. Mass in rings 1.6 and 0.3% of total DM

4 R [kpc] 14 kpc coincides with ring of stars at 14–18 kpc due to infall of dwarf galaxy

4 kpc coincides with ring of neutral hydrogen molecules!

W.de Boer, C.sander, V.Zhukov, A.Gladyshev, and D.Kazakov, A

A&A 444 (2005)17

Hallo Density on Scale of 30 Kpc

Side view

February, 1-7

Isother. NFW R200 295 kpc 145 kpc DM: 3.10¹² Mp 3.10¹¹Mp Vis.: 6.10¹⁰ Mp Outer Ring: 3.10¹⁰ Mp Inner Ring: 3.10⁹ Mp

Top view

Clustering of of Dark Matter

Cluster size: \approx Solar system? $M_{min} \cong 10^{-8} - 10^{-6} M_{\overline{o}}$? Steeply falling mass spectrum. Boost factor $\sim \langle \rho^2 \rangle / \langle \rho \rangle^2 \sim 20-2000$ From fit: B \approx 100 for WIMP of 60 GeV

Clumps with M_{min} -> dominant contribution -> MANY clumps in given direction -> same boostfactor in all directions

PAMELA: positron and antiproton measurements

Positron fraction

Antiproton/proton ratio

QuickTime™ and a decompressor are needed to see this picture. QuickTime[™] and a decompressor are needed to see this picture.

QuickTime[™] and a decompressor are needed to see this picture.

February, 1-7

Quick Time *** and a decompressor are needed to see this picture.

Rotation Curve for the Milky Way

Contributions to the rotation curve of the Milky Way from

- Visible disk
- Dark halo
- Inner dark ring
- Outer dark ring

20

R [kpc]

Feb Normalize to solar velocity of 220 km/s

Allowed SUSY Parameter Space

MSUGRA can fulfill all constraints from WMAP, LEP, $b \rightarrow s\gamma$, g - 2 and EGRET simultaneously, if DM is neutralino with mass in range 50-100 GeV and squarks and sleptons are O(1 TeV)

m₀ common spin 0 mass m_{1/2} common spin $\frac{1}{2}$ mass tanβ = v₂/v₁

High tan β solution tan β = 50

February, 1-7

EGRET Point and Mass Spectrum

W.de Boer, C.sander, V.Zhukov, A.Gladyshev, and D.Kazakov,

PL B636 (2006)13

February, 1-7

PHYSICS PROBLEMS

Cosmologists:

What is CDM and Dark Energy made of?

- Astrophysicists:
- What is the origin of excess of diffuse Galactic Gamma Rays?
- Particle physicists :
 - Where are the Supersymmetric Particles?
- Astronomers:
 - Why a change of slope in the galactic rotation curve at 1.1 R₀?

Solution: DM is made of WIMPs which are SUSY particles distributed in Halo of our Galaxy with a mass around 70 GeV