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BEYOND The Standard Mode/?

» The Standard Model has been enormously successfull

> Already physics Beyond SM and there are many unanswered
questions
> BIG Questions
> Birth of the Universe
> Formation of Galaxies
> Why we are here

> There are two basic ways to Explore Beyond the SM

> Perform Very-High-Precision Measurements of accessible
processes & measure small effects inconsistent with a purely
SM view of the world

> 6o to Very High Energy
> LHC
> Next?
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Outline

> Why Muon Accelerator Facilities? Inspirational

> Physics motivation for and nature of possible future facilities
based on ultra-high intensity muon beams

> Explore the synergy between Neutrino Factory and Muon Collider
facilities both from the point of view of the physics program and
the accelerator complex

> Neutrino Factory and Muon Collider Fundamentals

> What technologies are crucially central to making the above a
reality. Technical R&D Overview

> Path to Realization

> I hope to give you Overview of our activities but will have to
leave out many technical details
> http://www.cap.bnl.gov/mumu/
> https://mctf.fnal.gov/
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Physics in Evolution

What we might do at a Muon Accelerator Facility



protons/year Accelerator

. 16 GeVic From Snowmass 96
1.5x10 Proton s.10.M1

T Production

Target —— A p source providing 1-2 X
PlinnDem}' 1021 u/yr SUPPO"‘"S Cl f'iCh
Channel physics program:

\twon Intense Low-energy muon
o physics (LFV)

Channel

100 Mevic T > | —> e conversion experiment

1.5 x 102 muons

muons/year Muon S NeUTrino FaC."or'y
Accelerators

10 GeV Neatrinos > Low Ener'gy 4 GeV
o ings__ > High Energy 25 GeV

High
Energy

1 aN muons Noatiun T Energy Frontier Muon
4 \H Collider

A

\
( Muon Collider > 1.5 -4 TeV+

> With maybe a lower E_,,
machine (Higgs, Z') first.
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Low-Energy Muon Physics: u — e conversion

Bip— & conv in " Ti107

> Sensitive tests of Lepton Flavor
Violation (LFV)

> In SM occurs via v mixing

> Rate well below what is
experimentally accessible

> Places stringent constraints on
physics beyond SM
> Supersymmetry
> Predictions at 10-15

> Mass Reach to ~4 X 104 TeV . 10 1

André de Gouvéa,r-Project
X Workshop Golden Book
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The Neutrino Factory

Well-understood neutrino source:

ut>etv, v,
u Decay Ring: U eV, ve

S. Geer, Phys. Rev. D57 (1998) 6989"
> Flavor content fully known

> “Absolute” Flux Determination is possible

> Beam current, polarization, Near Detector semi & purely leptonic
event rates

» Tremendous control of systematic uncertainties with well

designed near detector(s)
*Bross et al.,, NIM A332, (1993)
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disappearance

appearance (challenging)

appearance (atm. oscillation)
disappearance

appearance: “golden” channel

appearance: “silver” ¢

> 'Reference’ Neutrino Factory:

> 2= 102%! useful decays/yr; exposure ‘5 plus 5’
years

> Two baselines (7500 km & ~4000 km)
> B0 kT mﬁ%neﬂsed iron detector (MIND)

gzr][\e gﬁr S performance - Golden Channel “Golden" — Sign of p observed
> Backgrounds (for golden channel): In de‘reg’ror‘ oppos.l‘re to that
» Sign of p mis-ID'd stored in decay ring

> Charm decays
. E, ~0.15* E

Y= ve = vh >up
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Fraction of ¢cp

3o contours shown

International Scoping Study - Physics Reach
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E E:::r:\r:'::is with v, — Uy, ) — Uy disappearance
precision sufficient
to determine the

appearance (challenging)

appearance (atm. oscillation)

structure of the Ve — Vg Ve — Uy disappearance
underlyi ng Theor'y e — Uy, Ve — 1), appearance: “golden” channel
> Explor'e very Iar'ge U, — U, Vo — . appearance: “silver” channel
mass scale
> Beyond the SvM
> NSI

> Sterile v
> Mass Varying v
(MVN)
> Unique v physics
program at near
detector(s)

Carl Albright - arXiv:0803.4176v1
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The Energy Frontier



Comparison of Particle Colliders

To reach higher and higher collision energies, scientists have built and proposed larger and larger machines.

0.5TeV
+4TeV
3TeV
"""" x ~1-3TeV 10 TeV
== Fermilabll Alan Bross BEYOND 2010 February 1, 2010




§n0 Fap

%7-}(’( The Energy Frontier via pu* p- Collisions

X\
bon oW’

Muon_Collider AT
Conceptual Layout

Hybrid 0.95-2.0 TeV

A Down sloping
<ol & Transfer lines

Deep Collider Ring

Pulsed 30-400 GeV
Hybrid 0.4-.95 TeV

Transfer lines

4 TeV Machine based on Rapid Cycling
Synchrotron

February 1, 2010

=

3 TeV Machine based on Recirculating

Linear Accelerators & ILC SC RF
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Muon Collider - Motivation

Reach Multi-TeV Lepton-Lepton Collisions
at High Luminosity

Muon Colliders may have
special role for precision measurements.
Small AE beam spread -
Precise energy scans

Small Footprint -
Could Fit on Existing Laboratory Site

== Fermilabll Alan Bross BEYOND 2010 February 1, 2010




=== gluino - tsq:?;;ﬁ AIE slepltlﬂn_s k_ X Ll > Independent of actual
oSt cneimarxs supersymmetric mass

LC 0.5 TeV
; ? scale and the reach of

the ILC, the 2004

CLIC Study conclusions

LBGICJHMAEFKD are S'“” Valid

> "A Multi-TeV
machine is needed
for extended
coverage of the
mass range

Nb. of Observable Particles

LBGICJHMAEFKD

4 B Alan Bross BEYOND 2010 February 1, 2010
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Muon Collider at the Energy Frontier

Te

- 9
“on oo’

» Comparisons with Energy Frontier

e*e- Collider i
> For many processes - Similar cross 3 '!'e:V COM
sections Visible E_,

> Advantage in s-channel scalar
production

> Beam Polarization also possible
> Polarization likely easier in e*e-
machine
> More precise energy scan capability

> Beam enerqgy spread and
Beamstrahlhung limits precision of
energy frontier (3TeV)Pe*e'
machines
> Muon Decay backgrounds in MC do
have Detector implications,

0
howeve r 2400 2500 2600 2700 2800 2900 3000

GeV

CM Energy

== Fermilabll Alan Bross BEYOND 2010 February 1, 2010




Complexity of Colliders

state of the art
magnets

state of the art
RF system

state of the art

beam dynamics

Total # of ~4000 -~4000 ~200,000
elements

Luminosity >le34 >le34 >le34
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Key Ingredients of the Facilities

Neutrino Factory and Muon Collider



Key Technical Ingredients Common to
NF and MC Facility

> Proton Driver

> Primary beam on production
target

> Target, Capture, and Decay

> Create 7's; decay into u's Production of
» Phase Rotation O(10%!) wyr

> Reduce AE of bunch
» Cooling

> Reduce emittance of the muons

At our current level of
understanding/analysis,
> Acceleration we believe the front of

> Accelerate the Muons the two facilities can be

. the same.
> Storage Ring
> Store for ~1000 turns 80% Overlap in R&D

Alan Bross BEYOND 2010 February 1, 2010




But there are Significant Differences

Neutrino Factory Muon Collider
Bunch Merging

» Cooling A Great Deal of Cooling

> Reduce transverse > Reduce 6D emittance
emittance > €L ~ 3-25 gm

> €L~ 25 mm >e,_~70mm
> Acceleration Acceleration

> Accelerate to 25 GeV > Accelerate to 1-2 TeV

> Maybe as low as 4-7 .
eV Storage Ring

. Storage Ring - Intersecting beams

> No intersecting beams

== Fermilablll Alan Bross BEYOND 2010 February 1, 2010



Muon Ionization Cooling

Basic Concepts



B? ds E, 2B3E,m, L
_ B.(14 MeV)?

€EN.min — 1
73 et
2Bm, 5Ly

(dE/ds)min
(MeV g~tem?)

Lr

Material Merit

(gem™2)

Alan Bross

B1(0.014 GeV)?

‘ maII emittance

Accelerator

Momentum loss is
opposite to motion,
D, P AE

Momentum gain
is purely longitudinal

H, is clearly Best -
Neglecting Engineering Issues
Windows, Safety

BEYOND 2010
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Muon Ionization Cooling - Longitudinal
Emittance Exchange

Dipole (bend)

_ d,
Dipole X—>Xp+1 % Wedge Absorber

introduces
red d
dispersion tiil uces energy sprea

Incident Muoen Beam Incident Muon Beam

Evacuated H; Gas Absorber
Dipole Magnet n Dipole Magnet

P’ Muons,
Inc.

Innovation in Research

Wedge Absorber

Figure 1. Use of a Wedge Absorber Figure 2. Use of Continuous Gaseous
for Emittance Exchange Absorber for Emittance Exchange

== Fermilabll Alan Bross BEYOND 2010 February 1, 2010
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Neutrino Factory Design



Neutrino Factory Accelerator Facility
Baseline out of International Scoping Study

> Proton Driver
> 4 MW, 2 ns bunch

hrt.).ttin\option r Linac option > Tqr‘get’ Capfure’ Drift
proton Driver (/| o (m—y) & Phase Rotation
Neutrino Beam > Hg J'ef

Common to ‘mm;-‘i-g—;rTarget { > 200 MHz train
MC & NF Sl > Cooling

> 30 mmm (L)
> 150 mmm ( L )
> Acceleration
> 103 MeV — 25 GeV

memoamns ) > Decay rings
Neutrino Beam 1H_+++_H_H+’_H_Hﬂ_++ 4t +—H_) g 7500 km L
M+++++h;u+;;;;;‘;;;? > 4000 km L
1.5 km > Baseline is race-track
design
ISS Accelerator WG report: RAL-2007-023 > Triangle inferesting

possibility (C. Prior)

BEYOND 2010

Alan Bross
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Muon Collider Design

Emphasis on Cooling



Muon Collider Facility

SChenle Project X OptiOﬂS
8 GeV SC Linac

Recycler *Probably favored at this time
\ 4 & used in following slides

Same as Main Injector to 56 GeV
Neutrino
Factory

Existing

Buncher

Hg Target

20 T Capture Solenoid

Phase Rotation to 12 bunches
Linear Transverse Cooling

The next slide

will show the B
. -4 >;<
evolution of 6 D Cooling azl:géenhetm '
emittances from Merge 12 to One Bunch 2
6 D Cooli Guggenheim + gas

(o]e] |ng _W|gg|er

production to
start of

‘ *
acceleration Transverse Coolingin 50 T :I— 30 T solenoids

| REMX

Linac

RLA(s)
RLA
Preliminary HE Acceleration Pulsed Synchrotron
Ring Designs 4 FFAG
\\O Collider Ring

More R&D needed to confirm viability and narrow the options

== Fermilabll Alan Bross BEYOND 2010 February 1, 2010




> Muon Collider designs
start with a NF front-
end, but require a much
more ambitious cooling
channel (6D cooling ~
O(10°) c.f. 4D cooling
~ 0(100).

» In the last 5 years
concepts for a complete
end-to-end self con- 50T solenoids after merge
sistent COOIing SCheme 0.01 0.1 1 10
have been deve|oped Transverse Emittance(mm rad)

> Requires beyond state-of-art components: need to be developed
> Hardware development and further simulations need to proceed
together to inform choices between alternative technologies

> Also progress on acceleration scheme & Collider ring design,
but the cooling channel presently provides the main Muon
Collider challenge

Phase rotate

to 12 bunches

Merge to
single bunch

—
)
o

—
<

6D cooling
before merge

Final Transv
Cooling in

Longitudinal Emittance (mm rad)
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j—
o

1E

“Merge to
single bunch

- Final Transv
- Cooling in

50T solenoiqs

Phase rotate
to 12 bunches

" 6D cooling

" before merge |

— after merge

lllll.-

—

0.01

Alan Bross

0.1°

1~ 10

Transverse Emittance(mm rad)

[N RSES= L \IIIIII Illlf-luj
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Addressing the Technological
Challenges of
The Muon Collider



R&D Program Overview

Indicating some areas common to NF

>
>
>

High Power Targetry - NF & MC (MERIT Experiment)
Initial Cooling - NF & MC (MICE (4D Cooling))
200 (& 805) MHz RF - NF & MC (MuCool and Muon's Inc)

> Investigate RF cavities in presence of high magnetic fields
> Obtain high accelerating gradients (~15MV/m)
> Investigate Gas-Filled RF cavities

Intense 6D Cooling - MC
> RFOFO "“Guggenheim”

Acceleration- A cost driver for both NF & MC, but in very
different ways

> Multi-turn RLA's - a BIG cost reducer

> RCS for MC

> FFAG's - (EMMA Demonstration)

Storage Ring(s) - NF & MC
Theoretical Studies NF & MC

> Analytic Calculations
> Lattice Designs
> Numeric Simulations

Alan Bross BEYOND 2010 February 1, 2010




MERIT
The Experiment Reached 30TP @ 24 GeV

—_— .

SECOndary Syrlnge Pump \,.--—““':_ :____s“_ o
Containment ™\ e

Solenoid Jet Chamber

Proton
Beam

» Experiment Completed (CERN)

Beam pulse energy = 115kJ

B-field = 15T

Jet Velocity = 20 m/s

Measured Disruption Length = 28 cm

Required "Refill” time is then 28cm/20m/s = 14ms
> Rep rate of 70Hz

> Proton beam power at that rate is 115kJ *70 = 8MW

YV V VYV VY V

BEYOND 2010 February 1, 2010
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MuCool
Component R&D and Cooling Experiment

MuCool has the primary responsibility
to carry out the RF Test Pr'ogr'arq

> Study the limits on Accelerating ’
Gradient in NCRF cavities in
magnetic field

» Fundamental Importance to both NF
and MC - RF needed in

> Muon capture, bunching, phase rotation —
> Muon Cooling -
> Acceleration

Arguably the single most critical
Technical challenge for the NF & MC

== Fermilablll Alan Bross BEYOND 2010 February 1, 2010




The Basic Problem - B Field Effect

805 MHz Studies

Safe Operating Gradient Limit ve Maanet > Data seem to follow

afe Operating Gradient Limit vs Magnetic .

Field Level at Window for the three different universal curve i
Coil modes > Max stable gradient

degrades quickly with

\ 4040 (Opposing) B field
S e > Re-measured

2E
%339

. (Single Coil) > Same results
‘2‘8.5 DIACK
. 2/ K

2
%‘Q@_g >2X Reduction @ required field

165 .
(Solenoid) - 13.5 Superconducting Coils

E
>
=
=
-
c
2
=
©
—
o
2
-
frar}
Q
Q@
w

AV
TSIUwW

£
~
>
=
=
-
=
B
O
o
9
O

1 2 3 4 5
Peak Magnectic Field in T at the Window

Peak Magnetic Field in T at the Window
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High-6radient RF Operation B Field

> Promising indications @ a Solution
> SCRF Processing techniques help

> Reduce dark current

> More advanced techniques (Atomic-Layer-Deposition) may do
more

> Cavity material properties seem to be important

> TiN helps

> Coupled with SCRF processing may reduce FE even
more

> Mo, Be Coatings?
> Cavity bodies made from Be?
> Gas-filled (H,) cavities show promise
> Utilize Paschen effect to stop breakdown
> Operation with beam next test

Alan Bross BEYOND 2010
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Tracking
Spectrometers

Matching | |
Coils Liquid RF

Magnetic

Hydrogen Cavities shield

Absorbers

> Measure transverse (4D) Muon Ionization Cooling
> 10% cooling - measure to 1% (10-3)

> Single-Particle Experiment
> Build input & output emmittance from p ensemble

Alan Bross BEYOND 2010

February 1, 2010




Muon Collider Machine-Detector Interface

If a Multi-TeV Muon Collider is built

Can a detector be designed that will do the
physics?



Shielding Detector Backgrounds

» MC detector backgrounds studied actively 15
years ago (1996-1997). The most detailed work
was done for a 2x2 TeV Collider — Vs=4 TeV.

> Large background from decay electrons ... decay
angles O(10) mrads. |
Electrons stay inside
beampipe for ~6m.

> Shielding strategy:
sweep the electrons
born further than ~6m
from the IP into ~6m of shielding.

» Detailed studies show that, with careful design,

this shielding strategy works extremely well.
2= Fermilab BEYOND 2010 February 1, 2010
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Background Levels

> Detailed shielding design done plus background simulations using
two codes (MARS & GEANT) — consistent results. Tungsten
cone in forward direction with angle 20° (c.f. CLIC = 7°).
> With modern detector technologies, perhaps angle can be reduced &
tungsten can be instrumented.
> Hit densities at, r=5cm are 0.2 hits/mm2. Comparable to CLIC
estimates. Also, ideas on how to further reduce hits by x100.

> SYNERGY with CLIC Detector R&D and design studies.
> LHC Detector Technologies

» Just Completed:

. Muon Collider Physics Worksho
# Fermllab MZchine - Detector - PﬁysiEs

November 10-12 (Tuesday-Thursday), 2009

Alan Bross BEYOND 2010
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The Way Forward

US Muon Accelerator Program



Current Guidance From DOE

» The Office of HEP at the DOE supports the
concept of the 5-7 year plan

> Requests Fermilab to form a National Muon
Program

> With Strong Desire to bring in International
Participation

> & With Strong University Participation

> However, sees an increase of scope over the
current program at a X2 (at least initially).
Increase could start as early as FY11.

> This is consistent with Steven Chu's outlook
towards science

> Re-energize the national labs as centers of great
science and innovation

> Embrace a taking in research

Alan Bross BEYOND 2010
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Muon Collider Technical Foundation

Years
From Here to There

0

Pr.Driver
Target
Collection
Main Cool

Final Cool

HAccelerator j | - Year 1
: : : g : : - Year 5
Collider : : ' | -

Detector

Readiness
. J
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Closing Remarks



Road Map to the Future

> We believe ~2012 will be a pivotal time in HEP
> LHC Physics Results

> Neutrino Data from Reactor and Accelerator
Experiments

> Double Chooz Daya Bay
> MINOS, OPERA, T2K ,NOvA

> Major Studies for Frontier Lepton-Colliders
Completed

> ILC EDR
> CLIC CDR
> There are likely to be many exciting results -
Will point us in Some Direction

> We Don't Know Which One Yet



To "Boldly 6o” BEYOND the SM?

» A Muon Accelerator FC(CI'IT ogfer's Umque Possnbllmes to
Explore, a Dlscove ysics Beyond th

- LFV, XM G'I?@a'd@'ﬂf&lﬂ@tlih?y cool muon

sources

- ffend g @umgb%smmuresoom study
Eseg»lm%vﬁi %I EYYHA® Fhe=GNYortier

> The sics case for an ﬂer‘ -Frontier Lepton-Lepton
Colli er' IS compe ling a

> And g quar'ds a MC wou qgke. the cost-benefit nalysus
Presefyts’ ﬂ'FQ’CYe"é\ Fbries di Ficult to
> ll'ch\q"te
21:21111.'&"0 ex eri CE\QG gr'am wi de er' me ‘\ p%!‘wgl!'nu

the ar'gumen'rs wil g
> However, "We" hdve t case that the R&D

SHOULD be done in order to be ready - be a credible part
of the discussion - Now accepted by US DOE

February 1, 2010
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Muon Complex Evolution At Fermilab

MUON COLLIDER
PROTON SOURCE = SITE SPECIFIC TEST FACILITY NEUTRINO

FACTORY
Muon
SnomeSS UpdaTe | O 2 Collider PROJECT
; ) R&D Hall
8 GaV 5C Linac Recycler Main Injector Rebunch e
: Omgay COO' / RLA

O Target Phase Rot. ! .{M GeV)
& Bunch @
PROJECT X -
3 & . Ring

B
6D Cooling 0 0

EXISTING FACILITIES

Final Cooling B

Starting with a high-intensity proton FE .
source: Project X MUON COLLIDER 7
* We see a natural evolution of “"muon” Collider Ring 9
program for Fermilab
Project X — Low-Energy NF iry | Moreac @
(pointing fo Homestake) — High- FAJON COLLIBER: | argerting
Energy NF — 1.5 TeV MC — 4 TeV
MC




Fermilab to DUSEL (South Proton
Dakota) baseline -1290km Source

4-5 GeV muons yield
appropriate L/E,

Use a magnetized totally active
scintillator detector

Accumulate

Decay
Geer, Mena, Pascoli Channel
Phys. ReV D 75, 093001 (2007) .
Bross, Ellis, Geer, Mena, Pascoli Potentially
Phys. ReV D 77, 093012 (2008) _ X10 increase
Linear in Sensitivity
Cooler Storage Over
Super-Beam
Sousele. Lo e
N ~NOVA— — ==
_ = “‘3=M_|yos
3 fe .;\.. \ / - —/_6/:—7:'_ —: ‘_ I
'/F.l._z’_r_l_'mlab ;__'_—~M'cn_-:an\--‘
Tt 5 > Ankenbrandt, Bogacz, Bross, Geer, Johnstone, Neuffer, Popovic
'f e .\\\ o4 Fermilab-Pub-09-001-APC; Submitted to PRSTAB
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Fine-Resolution Totally Active Segmented
Detector

Simulation of a Totally Active Scintillating Detector (TASD) using Nova
and Minerva concepts with Geant4

15 m

e Momenta between 100 MeV/c to 15 GeV/c

e Magnetic field considered: 0.5 T

e Reconstructed position resolution ~ 4.5 mm

Alan Bross BEYOND 2010
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> Magnetized Totally
Active Sampling
Calorimeter 35kT
> Magnets
> 15m @ X 15mlong -0.5T
> Times 10!
> Cost estimate

> New Idea

> VLHC SC transmission
line
> Technically proven

> Might actually be

affordable
V- VECTOR FIELDS

== Fermilabll Alan Bross BEYOND 2010 February 1, 2010



Other Baseline

000 km

e 3
Kansas \1 - L a% . ComerTably
' Q ve 1 threshold
O : | Missouri : / k.
. |I Ol-{thoma : 1 : Arkanslas M_ernr'-'T';_is — *'
T Er ;
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TeV
€500 Tev
> 1DVTeV

ier
e

i

¢ Stage 1 - 40 TeV

largest machine to
congiderechnidate
fredl

The VLHC is the
be seriously
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Difficult in e*e- machine
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MuCool
Component R&D and Cooling Experiment

> MuCool

> With High-Intensity Proton Beam

MuCool Test Area

LH, Absorber
Body

oy Alan Bross BEYOND 2010 February 1, 2010
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