A framework for domain-wall brane model building

Raymond R. Volkas

The University of Melbourne

Beyond the Standard Models of Particle Physics, Cosmology and Astrophysics Feb 2010

References

- Collaborators: Ben Callen, David Curtin, Aharon Davidson, Rhys Davies, Alison Demaria, Damien George, Archil Kobakhidze, Jayne Thompson, Ben Toner, Kamesh Wali.
- Our work based on foundational papers by Rubakov and Shaposhnikov (1983), Dvali and Shifman (1997), Randall and Sundrum (1999).
- **.** I shall not give detailed references during the talk; please see our papers.

Context

Varieties of brane-world models:

- String theoretic.
- **•** Field theoretic with brane(s) as δ -fn object(s) put in by hand. Often taken as effective low-energy outcomes of string theory, e.g. RS1.
- Completely field theoretic, with brane as soliton (domain wall, vortex, domain-wall junctions).

I shall discuss this last class. Specifically, we'll have one topologically-infinite extra dimension (like RS2) and the brane will be a domain wall.

Motivations

Why be interested in this class of brane-worlds?

- **It is a bottom-up approach, contrasting with the top-down** string-theory philosophy.
- It uses field theory only, including for the origin of the brane.
- Is there a phenomenologically-viable model in this class?
- Once you have a candidate for a viable model, does it solve any problems?
- All spatial dimensions on equal footing in the action.

Framework

- **1** Construct scalar field theory to produce required domain wall solution.
- ² Dynamically localise chiral fermion zero modes (candidate quarks and leptons).
- ³ Dynamically localise required scalars (e.g. EW Higgs doublet).
- ⁴ Dynamically localise gauge bosons.
- **5** Dynamically localise gravitons.
- ⁶ See if everything works in detail, fundamentally and phenomenologically.
- **2** See if any mysteries are solved.

UV completion?

The 5d theory is *non-renormalisable*, even without gravity, so at the quantum level it is defined with a *UV cut-off*. This fits OK with the bottom-up philosophy: we are not trying to solve everything in one go!

Candidate UV completions:

- String theory. DW not obviously a D-brane, but maybe the effective low-energy field theory limit of some string theory admits DW solutions.
- A Lifshitz type of field theory??
- Something nobody has thought of yet.

Domain walls and kinks

We need a potential with *disconnected* and *degenerate* vacua:

$$
V=\lambda(\eta^2-\nu^2)^2
$$

with η a scalar field.

Domain walls and kinks

Lagrangian for $\eta(x^{\mu}, y)$:

$$
\mathcal{L} = -\frac{1}{2}\partial_M \eta \ \partial^M \eta - V(\phi)
$$

A solution is the *kink*:

 $\eta_{\rm kink}(\textbf{\textit{y}}) = \textbf{\textit{v}}$ tanh(√ 2λ*vy*)

It is topologically stable.

Let Ψ(*x*, *y*) be 5d fermion Yukawa coupled to background scalar field *b*(*y*). It obeys 5d Dirac Eq:

*i*Γ *^M* ∂*^M* Ψ − *b*(*y*)Ψ = 0

where $\mathsf{\Gamma}^{\sf M}=(\gamma^\mu, -i\gamma_5)$.

Do mode decomposition (generalised KK expansion):

$$
\Psi(x,y)=\sum_m [f_L^m(y)\psi_L^m(x)+f_R^m(y)\psi_R^m(x)]
$$

The ψ 's are 4d fermions, forced to obey 4d Dirac Eq:

 $i\gamma^{\mu}\partial_{\mu}\psi^{m}_{L,R} = m\psi^{m}_{R,L}$

The mode functions $f^m_{L,R}$ then obey the Schrödinger-like equations

 $-f_{L,R}^m'' + W_{\mp} f_{L,R}^m = m^2 f_{L,R}^m$

with effective potentials

 $W_{\mp}(y) = b(y)^2 \mp b'(y).$

At points y_0 s.t. $b(y_0) = 0$, you get a *localised chiral zero mode*. The chirality depends on whether *b*(*y*) slopes up (LH) or down (RH).

These are our candidate quarks and leptons.

The profile for the chiral zero mode is:

 $f(y) \propto e^{-\int_{y_0}^{y}b(y')dy'}$

The *b*'s depend on the Yukawas, so the *f*'s are *exponentially sensitive* to them. This is the key to getting fermion mass hierarchies (see later).

Mode functions are normalised as per $\int_{-\infty}^{+\infty} f(y)^2 dy = 1$ to make 4d field kinetic terms conventionally normalised.

This proceeds in a very similar way to fermions. I'll omit the details here.

One important outcome: a localised 4d scalar can have a tachyonic mass-squared. Hence we can have SSB inside the wall. We'll use this for the electroweak Higgs doublet.

Graviton localisation

A reasonably trivial modification of type-2 Randall-Sundrum:

- Effective "volcano" potential describes graviton localisation.
- 4d graviton zero mode solution.
- No mass gap to graviton KK excitations, but OK because their mode functions are very suppressed inside the wall (tunnelling through a barrier).
- The warped metric turns the effective localisation potentials for fermions and scalars from wells into volcanoes: no mass gap, but OK for same reason as gravitons.

Gauge field localisation

This is the trickiest issue. I shall discuss a proposal called the Dvali-Shifman mechanism. Its validity is not established, but there are plausibility arguments. Assuming it works allows model building to progress!

It requires:

- **1** The unbroken symmetry inside the wall to be a subgroup of the bulk symmetry.
- 2 The bulk to be in confinement phase.

Unlike other types of field localisation, this mechanism relies on non-perturbative QFT rather than classical FT.

Gauge-field localisation

The confining bulk repels the field lines of a source inside the wall. The large distance gauge field behaviour inside the wall is effectively dimensionally reduced by 1.

The background DW

Dvali-Shifman tells us that we should embed *SU*(3) × *SU*(2) × *U*(1) in a larger group that breaks to it inside the wall.

The minimal sensible choice is *SU*(5).

We use an *SU*(5) singlet scalar η to produce a kink, and an *SU*(5) adjoint χ to break $SU(5)$ to the SM inside the wall.

Write $\chi=\sum_{\bm a} \bm T^{\bm a}\chi_{\bm a}$, where $\bm T$'s are $\bm S$ U(5) generators in the fundamental. If the component χ_1 corresponding to the hypercharge generator *Y* condenses, then $SU(5) \rightarrow SU(3) \times SU(2) \times U(1)_Y$.

The background DW

-v Ω v field profile extra dimension *y* η χ

You write a Higgs potential, arrange the global minima

 $\langle \eta \rangle = \pm \mathbf{v}, \ \langle \chi \rangle = 0,$

use them as boundary conditions, solve the Euler-Lagrange equations to get, e.g.

 $\eta(\mathbf{y}) = \mathbf{v} \tanh(\mathbf{ky})$,

 $\chi_1(\mathbf{y}) = A \operatorname{sech}(k\mathbf{y}).$

This simple analytical solution holds on a certain parameter slice. Off that slice, similar solutions exist but must be obtained numerically.

Next, you introduce 5d fermions

$$
\Psi_5\sim 5^*,~\Psi_{10}\sim 10,~N\sim 1
$$

and you Yukawa couple them to η and χ :

$$
Y_{DW} = h_{5\eta} \overline{\Psi}_5 \Psi_{5\eta} + h_{5\chi} \overline{\Psi}_5 \chi^T \Psi_5
$$

+
$$
h_{10\eta} \text{Tr}(\overline{\Psi}_{10} \Psi_{10}) \eta - 2h_{10\chi} \text{Tr}(\overline{\Psi}_{10} \chi \Psi_{10})
$$

+
$$
h_{1\eta} \overline{N} N \eta.
$$

The background fields you use in the 5d Dirac Eq. are:

$$
b_{nY}(y) \equiv h_{n\eta}\eta(y) + \sqrt{\frac{3}{5}}\frac{Y}{2}h_{n\chi}\chi_1(y).
$$

SM components of different hypercharge *Y* couple to different linear combinations of $n(v)$ and $\chi_1(v)$. Fermions are *split*, but not arbitrarily.

EW symmetry breaking

Now introduce a scalar Φ ∼ 5 [∗] containing the weak doublet Φ*^w* and a coloured scalar Φ*c*. Yukawa couple it to fermions in the usual way.

You do a mode decomposition, and are interested in the lowest modes:

 $\Phi_{W,c}(X, Y) = p_{W,c}(Y) \phi_{W,c}(X)$

You write the Higgs potential, plug the above into the Euler-Lagrange Eqs., get effective Schrödinger Eqs. for the profiles *p*(*y*).

EW symmetry breaking

Scalar trapping potentials Generic scalar modes

The *p^w* well is deeper (due to parameter region chosen) and gets a negative evalue m_W^2 triggering spontaneous EW symmetry breaking.

Fermion spectra

I now report some preliminary results from work by Ben Callen on fitting the model to the observed quark and lepton masses, including neutrinos.

A 4d Yukawa coupling is of the form:

$$
h\left[\int dy f_L(y)f_R(y)p(y)\right]\overline{\psi}_L(x)\psi_R(x)\phi(x).
$$

The 4d Yukawa coupling constant is equal to the 5d Yukawa multiplied by an overlap integral of profile functions, which themselves depend on Yukawas in a complicated way.

The profiles are *exponentially sensitive* to the Yukawa coupling constants. Searching the parameter space is numerically intensive. We have been proceeding by trial-and-error. Multiple viable regions exist.

Fermion spectra – no mixing

3rd gen profiles 2nd gen profiles

Brown - the right handed neutrinos; Red - the left handed lepton doublets; Blue - right handed down, strange, and bottom quarks; Green - right handed electron, muon and tau; Orange - right handed up, charm, and top quarks; Purple - the left handed quark doublets; Black dashed - the Electroweak Higgs.

Fermion spectra – no mixing

1st gen profiles

All EW Yukawas have been set as equal!

Fermion mass differences *entirely* driven by profiles through coupling to the DW background. The masses can be fitted well, including very light Dirac neutrinos.

Spread used in fermion-DW Yukawas is less than order-of-mag. Fermion mass spread is nevertheless 14 orders-of-mag.

Higgs-induced proton decay suppression This process proceeds via the Yukawa terms

 $\overline{u}_R(e_R)^c \phi_c^*$ and $\overline{d}_R(u_R)^c \phi_c$.

For the *same* region of parameter space that fits the masses, the effective 4d Yukawa couplings constants are, respectively, about

 10^{-31} and 1.

The proton partial lifetime goes below the experimental bound for ϕ_c mass greater than just a few GeV!.

Summary

- There is a framework for potentially viable domain-wall brane models.
- The dynamical localisation of fermions, scalars and gravitons is well understood.
- The dynamical localisation of gauge bosons is not well understood (in field theory). The Dvali-Shifman proposal allows model building to proceed readily. Its validity is an open question.
- Combining the mechanisms, one can construct a 5d SU(5) model that can alleviate the fermion hierarchy problem and has slow Higgs-induced proton decay.
- • Open problems: gauge coupling constant unification, gauge-boson-induced proton decay, gauge hierarchy, dark matter.