

B-PHYSICS AT THE LHC JACOPO NARDULLI ON BEHALF OF THE LHCb COLLABORATION SCIENCE AND TECHNOLOGY FACILITY COUNCIL RUTHERFORD APPLETON LABORATORY BEYOND 2010, 1 - 6 FEBRUARY

WHY B (FLAVOUR) PHYSICS?

Search for (and understand the nature of) new physics by looking at processes dominated by loop-diagrams → These involve "virtual" particles Sensitivity to particles order of magnitude above the center of mass energy Need to measure flavour YES parameters beyond the LHC **GPDs** directly Flavour physics studies are observe new required physics ? Need to search for new physics NO beyond the TEV Scale

B-PHYSICS IN 2010

→ The CKM picture of CP violation is well established, but there are still possibilities for new physics in precision measurements of the Unitarity Triangles

Angles precision limited by imental measurements: $\rightarrow \sigma(\alpha) \sim 5^{\circ}$ $\rightarrow \sigma(\beta) \sim 1^{\circ}$ $\rightarrow \sigma(\gamma) \sim 20^{\circ}$ (B_s system is less tested) $\rightarrow \sigma(\phi_s)$ not measured

B-PHYSICS AT THE LHC

B-PHYSICS REQUIREMENTS

- Precise vertexing for lifetime measurements
 → Separate B decay vertex from primary vertex
- Particle ID for final states

 → Distinguish π/K and identify leptons over large momentum range

Efficient triggering

 → Triggering on leptons for GPDs
 → Triggering on both leptons and hadrons in LHCb
 → Many different channels have low branching ratios
 → Reduction factor up to 1/7500

THE GENERAL PURPOSE DETECTORS

- Design luminosity 10³⁴cm⁻²s⁻¹
- B physics up to 10³³cm⁻²s⁻¹
- Annual integrated luminosity 10fb⁻¹ in nominal year of data
- Excellent muon-ID
- Trigger on high pt muons

- Forward spectrometer (running in pp collider mode)
- Design luminosity 10³²cm⁻²s⁻¹
- Annual integrated luminosity 2fb⁻¹ in nominal year of data

Vertex locator around the interaction region
 → proper time resolution ~ 40fs

• Tracking system and dipole magnet to measure angles and momenta \rightarrow $\delta p/p \sim 0.4\%$ and B mass resolution 16 - 20 MeV

• Two RICH detectors for charged hadron identification

 \rightarrow Provide > 3 σ π/K separation for 3 < p < 100 GeV

• Calorimeter system to identify electrons, hadrons and photons \rightarrow Important for the first level of the trigger

• Muon system to identify muons, also used in first level of trigger

FIRST COLLISIONS IN 2009 (AND THEY WORKED !!!)

FIRST COLLISIONS IN 2009 (AND THEY WORKED !!!)

LHC SCENARIO(S) FOR 2010

- LHC is due to restart in the 2nd half of February
- Energy up to 3.5 TeV per beam
- LHCb expect to collect 200 500 pb⁻¹

B-PHYSICS GOALS

B-hadron decays offer sensitivity to a wide range of New physics → We'll look over a few selected highlights

- Rare decaysObservations or BR limits $B_s \rightarrow \mu^+\mu^-$ Angular analysis $B_d \rightarrow K^*\mu^+\mu^-$
 - \mathbf{P}
 - Radiative penguins in $B_d \rightarrow K^* \gamma$ b \rightarrow sy transitions $B_s \rightarrow \phi \gamma$

B-PHYSICS GOALS

B-hadron decays offer We'll look over a few	sensitivity to a wide ran selected highlights	ge of New physics →
Rare decays	Observations or BR limits	B _s → μ ⁺ μ ⁻
	Angular analysis	$B_d \rightarrow K^* \mu^+ \mu^-$
	Radiative penguins in B_d - b \rightarrow sy transitions	→ K [*] γ Β _s → φγ
CP Violation	Mixing phase φ _s	В _s → Ј/Ψф
	CKM angle γ from loop B _d - decays B _s -	→ π ⁺ π ⁻ → K ⁺ K ⁻
	CKM angle γ from tree B _s - decays	→ D _s K B _d →D ⁰ K ^{*0} ; B ⁺ →D ⁰ K ⁺

$B_s \rightarrow \mu^+ \mu^-$ motivation

$B_s \rightarrow \mu^+ \mu^-$ SENSITIVITIES

Best published limit is from CDF public note 9892:

- 3.7fb⁻¹ of data
- BR < 3.3 x 10⁻⁸

ANALYSIS CHALLENGES:

- Need to normalize the BR with $B \rightarrow J/\Psi K^+$ and $B \rightarrow K^+\pi^-$
- Main systematic

limitation from normalization with B_d/B_s \rightarrow Large uncertainty in $f(B_d)/f(B_s)$

SENTIVITIES AT THE LHC

	Int. Lum.	S _{ignal} B _{ackground}
LHCb	2 fb ⁻¹	7.6 22
ATLAS	10fb ⁻¹	5.714
CMS	10fb ⁻¹	6.1

$B^{o} \rightarrow K^{*} \mu^{+} \mu^{-}$ MOTIVATION

$B^{o} \rightarrow K^{*} \mu^{+} \mu^{-}$ SENSITIVITIES

Beyond 2010 1-6/2/2010

20/32

ΜIXING PHASE φ_s

MIXING PHASE ϕ_s

Measure ϕ_{s} from a time dependent decay rate asymmetry $A_{CP}(t) = -\frac{\eta_{f} \sin \phi_{s} \sin(\Delta m_{s} t)}{\cosh\left(\frac{\Delta \Gamma_{s} t}{2}\right) - \eta_{f} \cos \phi_{s} \sinh\left(\frac{\Delta \Gamma_{s} t}{2}\right)}$

ΜIXING PHASE φ_s

THE CKM ANGLE

Crucial to constrain the Unitarity Triangle !

CKM Fitter $\gamma = 73^{+22}_{-25}$

Constraints from γ compared to the prediction from the global CKM fit

THE CKM ANGLE Y

Y FROM TREES – GGSZ

Sensitivity to γ from differences in Dalitz plot for B⁺ and B⁻ decays

• Two approaches to the Dalitz analysis

→ Unbinned fit using a model for the Dalitz plane. This approach makes full use of the statistics but incurs a systematic uncertainty of between 6° and 15°

→ A binned model-independent fit which relies on input from CLEO-c data. Model error replaced by uncertainty on strong phase parameters: 2°. Not full use of the statistics available

Y FROM TREES – GGSZ

Beyond 2010 1-6/2/2010

27/32

Y FROM TREES – TIME DEPENDENT CPV

Y FROM TREES – SUMMARY

- Global fit to obtain the best sensitivity to $\boldsymbol{\gamma}$

Sensitivity to γ \rightarrow 2 fb⁻¹ 4-5° \rightarrow 0.5 fb⁻¹ 8-10°

Y FROM LOOPS

RADIATIVE DECAYS AT THE LHC

CONCLUSIONS

- Only some selected measurements have been shown
- Many other interesting measurements will be performed (i.e. α,β)
- CPV with charm decays
- Etc.

• LEP, Tevatron and B-factories have established the SM picture in B-decays

- The LHC flavour physics program has the potential to go beyond the Standard Model
- All the experiments are ready !

$B^{o} \rightarrow K^{*} \mu^{+} \mu^{-}$ MOTIVATION

Figure 3: Theoretical $A_{\rm FB}$ distributions in a number of models. The solid line gives the SM prediction. The dashed lines show predictions from a universal extra dimensions (UED) model, a non-minimal flavour violating supersymmetric model (GMSSM) and a flavour blind supersymmetric model (FBMSSM). Details of these models can be found in Ref. [8].

MIXING PHASE ϕ_s

Y FROM TREES – ADS/GLW

 Combination of color suppressed B decays with Cabibbo favoured D decays increases the sensitivity to CP parameters.

Mode	Yield	B/S
$B^{\pm} \rightarrow D(K\pi)K^{\pm}$	84k	0.6
$B^{\pm} \rightarrow D_{sup}(K\pi)K^{\pm}$	1.6k	0.6
B [±] →D(Кπππ)K [±]	53k	0.2
В [±] →D _{sup} (Кπππ)К [±]	0.55k	3.1
B [±] →D(hh)K [±]	11.4k	1.4
B ⁰ →D(Kπ)K [*]	3.2k	0.25
В ⁰ →D _{sup} (Кπ)К*	0.3k	< 10
B ⁰ →D(hh)K*	0.4k	< 8