Looking for High Energy Neutrinos from Space: the ANTARES experiment

Vincenzo Flaminio for the ANTARES Collaboration (Physics Dept. & INFN-Pisa)

v^{s} from space: the long march

Solar neutrinos (MeV energies)

→ Davis et al. 1955 – 1978

Koshiba et al., 1987-1988

v^{s} from space: the long march

Later → observation of v^s from SN1987a → help clarify mechanism of SNs (Energies around 10 MeV)

From MeV v^s to PeV v^s

Detectors of High Energy (GeV \rightarrow **PeV Energy) Cosmic** v^{s}

Why?

- Understand production mechanism of HE cosmic rays
- Disentangle Synchrotron-Inverse Compton from Hadronic production in SNRs
- Study Binary systems, µQuasars
- Investigate the very high energy processes occurring in GRBs
- Search for Dark matter
- New probe \rightarrow new observations

See also talk by Felix Aharonian at this Conference

Potential sources

vincenzo flaminio

Cross Sections & Interaction Lengths

Particle	ര (mb)	σ (cm²)	Interaction length λ (m of H ₂ O)
H.E. Proton	50	5 x 10 ⁻²⁶	0.3
Η.Ε. γ	0.4	4 x 10 ⁻²⁸	42.0
Η.Ε. ν	0.7 x 10 ⁻¹¹ x E $_{v}$ (GeV)	0.7 x 10 ⁻³⁵ (at 1 TeV)	2 x 10 ⁹
"	0.7 x 10 ⁻¹¹ x E $_{\rm v}$ (GeV)	0.7 x 10 ⁻³² (at 1 PeV)	2 x 10 ⁶

$$D_{Earth}$$
 = 12.8 x 10⁶ m $\rightarrow \lambda$ = D_{Earth} at E_v = 190 TeV

Neutrino Telescopes

Neutral particle

Weak interaction

- \rightarrow points back to source (undeflected by B fields)
 - \rightarrow negligible absorption

Tiny cross section need huge detector

 ν_{μ} + N \rightarrow μ + hadrons μ measures ν direction

$$\theta \leq \frac{1.5 \text{ deg.}}{\sqrt{E_{V} [\text{TeV}]}} \rightarrow \mu$$

7

A little bit of history

Bruno Pontecorvo

Detection technique

M.Markov, **1960**:

Moisej Markov

We propose to install detectors deep in a lake or in the sea and to determine the direction of charged particles with the help of Cherenkov radiation

Atmospheric muon background at 2500 m

Price to pay \rightarrow cutoff due to absorption by the Earth

Neutrino detection principle

3D PMT array

Cherenkov light from μ

> 2500 m 43° depth

interaction

Measurement : Time & position of hits μ (~ ν) trajectory

Pioneering developments Dumand experiment (Hawaii 1978-1992), depth 4500 m phased out Roberts, RMP 64, 1, 1992						
Later experiments in lakes or sea						
Baikal (Baikal lake, Russia, 1983 → present) depth 1100 m I.A. Belolaptikov et al., Astr. Ph. 7, 263, 1997	running					
Nestor (Pylos, Greece \rightarrow 1996 - 2003) depth 4000 m G. Aggouras et al., Astr. Ph. 23, 377, 2005	prototype operated in 2003					
NEMO (Capo Passero, Sicily 2001→ present) depth 3500 m Capone et al., N.I.M. A 602, 47, 2009	prototype operated in 2007 new one under construction					
ANTARES (Toulon, France \rightarrow 2001 \rightarrow present) depth 2500 m V. Flaminio, XIII Int. Works. on v Telescopes, Venice, 2009	running since 2006					
KM3NET (European Project: Antares+Nemo+Nestor) http://www.km3net.org (Mediterranean: site to be decided)	FP6 → Design Study FP7 → Prep. Phase					

- IPHC (IReS), Strasbourg
- Univ. de H.-A., Mulhouse
- IFREMER, Toulon/Brest
- C.O.M. Marseille
- & LAM, Marseille
- GeoAzur Villefranche

- University/INFN of Catania
- LNS Catania
- University/INFN of Pisa
- University/INFN of Rome
- University/INFN of Genova

The Michel Pacha Building

(Marius Michel)

The ANTARES detector

↑

57 m

The ANTARES detector

Expected Performance (12 lines detector)

Neutrino effective area

For E_v <10 PeV, A_{eff} grows with energy due to the increase of σ_v and the muon range. For E_v >10 PeV the Earth becomes opaque to neutrinos.

Angular resolution

For $E_v < 10$ TeV, the angular resolution is dominated by the v- μ angle. For $E_v > 10$ TeV, the resolution is limited by track reconstruction errors.

Detector operations

Data rate

- Muon (Cherenkov) \rightarrow 2 µs crossing time

Bioluminescence

Median rate of measured single photon counts: typ. 60 – 80 kHz caused by

bioluminescence (~ 30 kHz) and ⁴⁰K decay (~ 40 kHz) with occasional bursts of extreme high rates (~ MHz) caused by macro-organisms (depends on sea current):

multidisciplinary research, oceanographic studies

Neutrino-induced muon

Detector footprint

Detector as seen by atmospheric muons: reconstructed position of the muon at the time of the first triggered hit

Zenith angle distribution

Good agreement with "standard" neutrino oscillations $\sin^2 2\theta = 1; \Delta m^2 = 2.4 \cdot 10^{-3} eV^2$

vertical muon intensity

derived from zenith distribution for down-going muons in line 1: APP 31(4): 277-283 (2009)

ANTARES data

in good agreement with published data from Baksan, LVD, MACRO, Frejus, SNO and underwater/ice neutrino telescopes: BAIKAL, AMANDA, NESTOR

2007 data → neutrino sky map (all sky search)

Effective live time 140 days . Stringent selections: low backgroun & high reconstruction quality (ang. resolution < 0.5°)

binned, unbinned searches on data with scrambled coordinates of 94 events (equatorial coordinates):

- no correlation with 25 potential v sources;
- no excess (\pm 1 σ) in all-sky search; sensitivity competitive with multi-year exposures of previous experiments

Additional initiatives in ANTARES

a) Antares-Virgo-Ligo agreeement (common trigger)b) Antares Alerts to Optical Tescopes (Tarot)

September 18, 2009

observed neutrino and alert sent to TAROT

KM3NeT Consortium

42 institutes from:

Cyprus, France, Germany, Greece, Ireland, Italy, Netherlands, Romania, Spain, UK

pilot projects:

funded by FP6 for Design Study, by FP7 for Preparatory Phase, on the ASPERA roadmap

Conceptual Design Report: public since April 2008, Technical Design Report being finalised now Start Construction Phase \rightarrow 2011-2012

candidate deployment sites

criteria:

bioluminescence, optical background, currents, water transparency.

Km3Net Preparatory Phase

Funded by the EU FP7 framework in March 2008

Primary objective → pave the path to political and scientific convergence on the legal, governance, financial engineering and siting aspects of the infrastructure.....

Conclusions

- Long march towards underwater cosmic neutrino detection has undergone an acceleration
- ➢ Nestor → first serious attempt in the Mediterranean → results published from prototype
- NEMO → big effort towards Capo Passero site (3500 m)
 Construction of detector for NEMO PhaseI completed. Results being published.
 The 100 km electro-optical cable for NEMO PhaseII installed and shore-station building ready
- ANTARES made a major step forward during 2006-2007 and the 12lines detector with 900 OMs was completed in 2008. Data taking going on steadily.
- Joint European effort towards a km3 detector in the Mediterranean well advanced (Km3NeT DS+PP)

The End

Background Material

Deployment

Data taking periods:

• MILOM : Mar '05 – Mar '06 (40 km)

(2.5 km depth)

La Seyne-sur-Mer

Detector layout

Acoustic storey

... and several instruments for environment studies with the ANTARES infrastructure

Atmospheric muons

Design goals

Substantially better sensitivity than IceCube
 Volume > 1 km³

- Core process: v_{μ} +N $\rightarrow \mu$ +X above 100 GeV
- Construction and deployment < 4 years
- Data taking period > 10 year
- Optimized for energy range 1 TeV 1 PeV
- Angular resolution < 0.1°
- Zenith angle:
 - Full acceptance for neutrinos originating from directions up to at least 10° above the horizon
 - For energies > 100 TeV angular acceptance limited only by the absorption of the Earth

Km3Net Design Study

KM3NeT

KM3NeT: from the idea to a concept

Antares « Demonstrator » deployed end 1999 (1100 m depth)

NESTOR→ Prototype deployed in the Mediterranean (2003)

Avoid underwater connections \rightarrow no use of ROV

Implications: have to recover entire detector in case of repairs (not recommended after DUMAND experience) 32 m diameter floor (6 floors) 30 m between floors 144 15" PMTs

At the center of each floor a Ti sphere Houses the floor electronics

The Mini Tower for NEMO Phase-1

Mechanical stresses are applied only to the tensioning ropes

Cross Sections & Interaction Lengths

D_{Galaxy} = 10¹⁹ m => nr of Galaxies which could fit in one λ

Particle	Galactic Interaction length λ_{G} (m)	Nr Galaxies
Proton (if no neflection)	2 x 10 ²³	2 x 10 ⁴
γ	3 x 10 ²⁵	10 ⁷
v (1 TeV)	1.5 x 10 ³³	10 ¹⁴
v (1 PeV)	1.5 x 10 ³⁰	10 ¹¹

Local coincidences from ⁴⁰K decay

Storey coincidences

derive depth dependence of muon flux from coincidence-time distributions of (next-to) adjacent storeys, each with a local coincidence (± 20 ns):

low threshold of 4 GeV

(minimum track length between adjacent storeys)

mostly down-going muons: delay ~ + 20 ns)

Muon Flux

depth (h) dependence of muon flux $\Phi(h)$ is directly measured from adjacent storey coincidences: (accepted for publ. in APP) $\Phi(h) - \Phi(h) - \Phi(h)$

Improved sky map data

Scrambled data from 2007+2008 analysis: galactic coordinates

750 up-going neutrinos (from multi-line fit) being processed

Km3Net Design Study

Design study \rightarrow funded by EU FP6 in February 2006

Development of a cost-effective design for a cubic km sized deep-sea infrastructure housing a neutrino telescope....

Conceptual Design Report released in April 2008 (www.km3net.org)

Includes:

Science case

Site studies

Design goals

Technical implementation

