

Results from the Borexino experiment after 192 days of data-taking

Borexino Collaboration

Virginia Tech. University

Jagiellonian U.

Cracow

(Poland)

Kurchatov Institute (Russia)

Dubna JINR (Russia)

APC Paris

Heidelberg (Germany)

Munich (Germany)

Princeton University

Solar neutrino energy spectrum

Standard Solar Model:

Neutrino fluxes vs solar metallicity

(metallicity: abundance of the elements above Helium)

Φ (cm ⁻² s ⁻¹)	рр (× 10 ¹⁰)	рер (× 10 ⁸)	⁷ Be (x 10 ⁹)	⁸ B (× 10 ⁶)	¹³ N:CNO (x 10 ⁸)	¹⁵ O:CNO (x 10 ⁸)	¹⁷ F:CNO (x 10 ⁶)
BS05 ⁽¹⁾ GS 98 ⁽²⁾	5.99	1.42	4.84	5.69	3.07	2.33	5.84
BS05 ⁽¹⁾ AGS05 ⁽³⁾	6.06	1.45	4.34	4.51	2.01	1.45	3.25
Δ	+1%	+2%	-10%	-21%	-35%	-38%	-44%

⁽¹⁾BS05: Bahcall, Serenelli & Basu, AstropJ 621 (2005) L85

⁽²⁾Based on <u>high metalicity model</u> GS98: Grevesse & Sauval, Space Sci. Rev. 85, 161 (1998)
 ⁽³⁾Based on new <u>low metalicity model</u> AGS05:

Asplund ,Grevesse & Sauval 2005, Nucl. Phys. A 777, 1 (2006). BUT: incompatible with helioseismological measurements

MEASURING for the first time the CNO-neutrino fluxes would help to resolve the controversy!

Beyond 2010 - Cape Town - 1-6 Feb. 2010

Solar neutrino survival probability BEFORE BOREXINO

Low energy neutrinos: flavor change dominated by vacuum oscillations;

High energy neutrinos:

Resonant oscillations in matter (MSW effect): Effective electron neutrino mass is increased due to the charge current interactions with electrons of the Sun

Transition region:

Decrease of the v_e survival probability (P_{ee})

Solar neutrino survival probability BEFORE BOREXINO

Low energy neutrinos: flavor change dominated by vacuum oscillations;

High energy neutrinos:

Resonant oscillations in matter (MSW effect): Effective electron neutrino mass is increased due to the charge current interactions with electrons of the Sun

Transition region:

Decrease of the v_e survival probability (P_{ee})

Scientific goals of Borexino

- The first real-time measurement of sub-MeV solar neutrinos;
- The first simultaneous measurement of solar neutrinos from the transition region $(^{7}Be-v)$ and from the matter-enhanced oscillation region $(^{8}B-v)$.
- Precision measurement (at or below the level of 5%) of the ⁷Be-v rate to test P_{ee} :
 - the SSM and MSW-LMA solution of the Standard Solar Problem
 - indications of the mass varying neutrinos
 - indications of non-standard neutrino-matter interactions
- Test the balance between the neutrino and photon luminosity of the Sun;
- Check the 7% seasonal variation of the neutrino flux (confirm solar origin);
- Under study: first measurement of the CNO neutrinos (sun metallicity controversy);
- Under study: pep neutrinos indirect constrain on the pp-flux;
- High energy tail of *pp* neutrinos ?
- Antineutrinos and geoneutrinos;
- Supernovae neutrinos and antineutrinos;

Detection principles and v signature

- elastic scattering on electrons in highly purified organic liquid scintillator
 - **7Be v** is the main design goal.
 - ⁸B, pep, CNO and possibly pp v are additional solar emissions that can be studied.
- Detection via scintillation light:
 - + Very low energy threshold
 - + Good position reconstruction
 - + Good energy resolution
 - BUT...
 - No direction measurement
 - The v induced events can't be distinguished from other β events due to natural radioactivity
- <u>Extreme radiopurity of the</u> <u>scintillator is a must!</u>

Experimental site

Laboratori Nazionali del Gran Sasso

Assergi (AQ) Italy 1400m of rock shielding ~3500 m.w.e.

Detector layout and main features

Pmt sealing: PC & Water proof

Beyond 2010 - Cape Town - 1-6 Feb. 2010

Nylon vessels installation (2004)

D. D'Angelo – Borexino coll.

End October 2006

March 2007

Detector fully filled on May 15^{th,} 2007 DAQ STARTS

Beyond 2010 - Cape Town - 1-6 Feb. 2010

Detector performances

Fiducial volume definition

- the nominal Inner Vessel radius: 4.25 m (278.3 tons of scintillator)
- how to define fiducial volume of 100 tons?
 - 1) rescaling background components known to be uniformly distributed within the scintillator (¹⁴C bound in scintillator itself, capture of μ-produced neutrons on protons)
 - 2) using the sources with known position:
 - (Th emitted by the IV-nylon, γ external background, teflon diffusers on the IV surface)

Experimental spectrum

• Fit between 100-800 p.e.

- Light yield: a free fit parameter
- Light quenching included [Birks' parametrization]
- ²¹⁰Bi/CNO, ¹¹C and ⁸⁵Kr free fit parameters

Fit to the spectrum without and with a-subtraction is performed giving consistent results

⁷Be: (49 \pm 3_{stat}) cpd/100 tons

Beyond 2010 - Cape Town - 1-6 Feb. 2010

Systematic uncertainties

Source	Syst.error (1σ)
Tot. scint. mass	± 0.2%
Live Time	± 0.1%
Efficiency of Cuts	± 0.3%
Detector Resp.Function	± 6%
Fiducial Mass	± 6%
тот	± 8.5%

49 \pm 3_{stat} \pm 4_{sys} cpd/100 tons

	Expected rate (cpd/100 t)
No oscillation	75 ± 4
BPS07(GS98) HighZ	48 ± 4
BPS07(AGS05) LowZ	44 ± 4

To further reduce these errors <u>we need calibration!</u>

No-oscillation hypothesis rejected at 40 level

Calibration campaigns

3 calibration campaigns performed:

Oct 08 on axis / Jan-Feb09 on-off axis / Jun-Jul09 off axis

- accurate position reconstruction
- precise energy calibration
- detector response vs scintillation position

100 Hz ¹⁴C+²²²Rn source diluted in PC: 115 points inside the sphere

 β : ¹⁴C, ²²²Rn diluted in scintillator vial α : ²²²Rn diluted in scintillator vial γ : ⁵⁴Mn, ⁸⁵Sr, ²²²Rn in air n : AmBe

Neutrino magnetic moment

Beyond 2010 - Cape Town - 1-6 Feb. 2010

Constraints on pp & CNO fluxes

Combination of Borexino results on $^7{\rm Be}$ flux with other experiments: constrain the fluxes of pp and CNO $\rm v_e$

• The measured rate in Clorine and Gallium experiments can be written as:

$$\mathbf{R}_{k} = \sum_{i,k} \mathbf{f}_{i} \mathbf{R}_{i,k} \mathbf{P}_{ee}^{i,k}$$

$$f_i = \frac{\phi_i(measured)}{\phi_i(predicted)}$$

k = Homestake, Gallex $i = pp, pep, CNO, ^7Be, ^8B$ $R_{i,k} = \exp ected \ rate \ of \ source "i" \ in \ \exp eriment "k"(no \ oscill.)$ $P_{ee}^{i,k} = average \ survival \ probability \ for \ source "i" \ in \ \exp eriment "k"$

- $R_{i,k}$ and $P_{ee}^{i,k}$ are calculated in the hypothesis of **high-Z SSM** and **MSW LMA**, ;
- R_k are the rates actually measured by Clorine and Gallium experiments;
- $f_{8B} = 0.87 \pm 0.07$, measured by SNO and SuperK;
- $f_{7Be} = 1.02 \pm 0.10$ is given by **Borexino results**;
- Performing a χ^2 based analysis with the additional luminosity constraint;

Which is the best determination of *pp* flux (with luminosity constraint)

⁸B solar neutrino flux

- The first simultaneous measurement of solar-v from the **vacuum dominated region** (7Be-v) and from the matter-enhanced oscillation region (⁸B-v);
- The first measurement of ⁸B-v in real time below 5 MeV;

⁸B solar neutrino flux

First real-time measurement down to 2.8 MeV:

 $Rate_{>2 \ 8MeV} = (0.26 \pm 0.04 \text{ stat} \pm 0.02 \text{ sys}) \text{ counts/day /100 tons}$

$$\left(\Phi_{\exp}^{ES} / \Phi_{th}^{ES}\right)_{>2.8 \text{ MeV}} = (0.96 \pm 0.19)$$

Above 5 MeV in agreement with SNO and SuperK:

 $Rate_{>5MeV} = (0.14 \pm 0.03 \text{ stat} \pm 0.01 \text{ sys}) \text{ counts/day /100 tons}$

$$\left(\Phi_{\exp}^{ES} / \Phi_{th}^{ES}\right)_{>5 \text{ MeV}} = (1.02 \pm 0.23)$$

Survival probability after Borexino

Assuming high-Z SSM (BPS 07) the ⁸B rate measurement corresponds to

 P_{ee} (8B) = 0.35 ± 0.10 @ 8.6 MeV mean energy

Assuming high-Z SSM (BPS 07), the ⁷Be rate measurement corresponds to

 $P_{ee} (7Be) = 0.56 \pm 0.10 (1\sigma)$

which is consistent with the number derived from the global fit to all solar and reactor experiments (S. Abe et al., arXiv: 0801.4589v2)

 P_{ee} (7Be) = 0.541 ± 0.017

We determine the survival probability for ⁷Be and pp- v_e , assuming BPSo7 and **using input from all solar experiments** (Barger *et al.*, PR (2002) 88, 011302)

$$P_{ee}(^{7}Be) = 0.56 \pm 0.08$$

$$P_{ee}(pp) = 0.57 \pm 0.09$$

Day/Night effects

• **MSW mechanism:** possible v_e regeneration at night: amplitude depends on latitude, E_v and oscil. param. (θ , Δm^2)

- LMA solution: no day/night effect
- while LOW solution (already excluded by SNO, Kamland) and Mass Varying Models: a large effect

- No observation in Borexino can confirm LMA solution at low ${\rm E}_{\rm v}$

ADN=(N-D)/(N+D) 66.46/72 Ωq 0.006716±0.007908 0.4 ADN_{Fit} = $0.007 \pm 0.008 (\chi^2/ndf = 66.5/72)$ 0.2 -0.2 Livetime: night 212.87 days, "day" 209.25 days -0.4 300 450 350 400 500 550 600 250nhits ADN=(N-D)/(N+D) χ^2 / ndf 13.24/22 0.01438 ± 0.01324 0.4 $ADN_{Eit} = 0.014 + 0.013$ 0.2 -0.2 Fit only in the v energy window -0.4Beyond 2010 - Cape Town - 1-6 Feb. 2010 - 320 340

nhits

 $ADN = \frac{N-D}{N+D}$

N = counts during night time in 1 year D = counts during day time in 1 year

D. D'Angelo – Borexino coll.

J. N. Bahcall et al. Phys. Rev C 56,5 2839 and JHEP04 (2002) 007

• ADN (v signal + bkgr) is 0 within 1σ

 independent on the large systematic effects as FV definition and energy response function;

ADN (v signal only) = f (flux) => f(spectral fit):

$$\sigma_{ADN^{\upsilon}} \approx \frac{1}{\sqrt{2}} \frac{\sigma_{\Phi_{7Be}}}{\Phi_{7Be}} \quad ADN^{\upsilon} = 0.02 \pm 0.04 \text{ stat}$$

Systematic errors under study

PRELIMINARY

Cosmic muon flux

Muon rate: $(4312 \pm 4_{stat} \pm 4_{syst})$ cpd \rightarrow (1.22 ± 0.01) h⁻¹ m⁻²

Macro rate: (1.16 \pm 0.03) h⁻¹ m⁻², compatible at 2 σ

Beyond 2010 – Cape Town – 1-6 Feb. 2010

Beyond 2010 - Cape Town - 1-6 Feb. 2010

D. D'Angelo – Borexino coll.

Cosmic Neutrons

PRELIMINARY

What is observed is 2.2MeVy following capture on H

- Detection efficiency 92%
- Mean capt. time (258±2)µs

Mean lateral dist.
(37±5)cm

Experiment	Avg. E _µ	Target	10 ⁻⁴ n/(μ•g/cm ²)
Fluka/LVD	320GeV	C_nH_{2n}	2-3
KamLAND	260GeV	C_9H_{12}	2.8±0.3
Borexino	320GeV	<i>C</i> ₉ H ₁₂	2.9 _{-0.1} +0.3

Beyond 2010 - Cape Town - 1-6 Feb. 2010

Going for pep and CNO: ¹¹C tagging

$$\mu + {}^{12}C \rightarrow \mu + {}^{11}C + n$$

т (n capture): ~250µs

$$n+p \to d+\gamma_{2.2MeV}$$

$${}^{11}C \rightarrow {}^{11}B + e^+ + v_e$$

 The main background for pep and CNO analysis is ¹¹C, a long lived (τ =30min) cosmogenic β^+ emitter with ~1MeV end-point (shifted to the 1-2MeV range)

¹¹ C Production Channels:			
[Galbiati et al., Phys. Rev. C71, 055805, 2005]			
1.	95.5% with n: (X,X+n)		
	• X = γ , n, p, π^{\pm} , e^{\pm} , μ .		
2.	4.5% invisible :		
	• $(p,d); (\pi^+,\pi^0+p).$		

electronics improved in Dec 07 to be sensitive for this analysis:

- after each muon special
 1.6 ms neutron gate
 opened
- 2. FADC system in parallel

Beyond 2010 - Cape Town - 1-6 Feb. 2010

Borexino potential on geoneutrinos (antineutrinos from the Earth, chains of U & Th, and K)

Prompt signal energy spectrum (model)

5.7 events from reactors (in geo- ν E range) BSE: 6.3 events from geoneutrinos (per year and 300 tons, $\varepsilon = 80\%$, 1-2.6 MeV) (Balata *et al.*, 2006, ref. model Mantovani *et al.*, 2004)

BSE: 3σ evidence of geoneutrinos expected in 4 years of data

Borexino potential on supernovae neutrinos

Standard galactic SN (10kpc, 3·10⁵³ erg)

Normalized SN Neutrino Spectra

T_n, Recoiled Proton Visible Energy [MeV]

0.4

0.6

0.8

1.0

0.2

Detection channel	# of events	
ES (E _v > 0.25 MeV)	5	
Electron anti-neutrinos (E _v > 1.8 MeV)	78	
v-p ES (E _v > 0.25 MeV)	52	Can be used as an early alarm
$^{12}C(v,v)^{12}C*$ (E γ = 15.1 MeV)	18	
$^{12}C(anti-v,e^{+)12}B$ (E _{anti-v} > 14.3 MeV)	3	Borexino joined
¹² C(v,e-) ¹² N (E _v > 17.3 MeV)	9	SŇEWS in 2009

Borexino: E_{tresh} = 0.25 MeV target mass = 300 t

Conclusions

DONE

- First real-time measurement of solar-v below the barrier of natural radioactivity (5 MeV) down to sub-MeV range
- The first real-time measurement of ⁸B-v above 2.8 MeV
- The first simultaneous measurement of solar neutrinos from the vacuum dominated region (⁷Be-v) and from the matter-enhanced oscillation region (⁸B-v):
 - Confirmation for MSW-LMA solution
- Best limits for pp- and CNO-v, combining information from all solar and reactor experiments
- Improve the limit of neutrino magnetic moment

TO BE DONE

- Under finalization: precision measurement (at or below the level of 5%) of the ⁷Be-v rate;
- Check the 7% seasonal variation of the neutrino flux (confirm solar origin);
- Measurement of the CNO, pep and high-energy pp neutrinos;
- Strong potential in antineutrinos (geoneutrinos, reactor, from the Sun) and in supernovae neutrinos and antineutrinos;

Additional slides

Beyond 2010 - Cape Town - 1-6 Feb. 2010

Source insertion system

if you really like pictures...

Source insertion in the cross

Expected Monte Carlo spectrum

Muon identification

• μ are identified by the OD and by the ID

- OD eff: ~ 99%
- ID analysis based on pulse shape variables
 - Deutsch variable: ratio between light in the concentrator and total light
 - Cluster mean time, peak position in time
- Estimated overall rejection factor > 10⁴ (still preliminary)

• After cuts, m not a relevant background for ⁷Be

Residual background: < 1 count /day/ 1 00 t

Position reconstruction algorithms

- Base on time of flight fit to hit-time distribution
- developed with MC, tested and validated in Borexino prototype CTF
- cross checked and tuned in Borexino on selected events (14C, 214Bi-214Po, 11C)

Background: ²¹⁰Po

cannot be disentangled, in the ⁷Be energy range, from the CNO

Proton-proton cycle: the main energy source in the Sun

We determine the survival probability for ⁷Be and pp- v_e , assuming BPSo7 and **using input from all solar experiments** (Barger *et al.*, PR (2002) 88, 011302)

$$P_{ee}$$
 (7Be) = 0.56 ± 0.08

 $P_{ee}(pp) = 0.57 \pm 0.09$

Under the assuptions of High-Z SSM (BPS 07) the ⁷Be rate measurement corresponds to

 P_{ee} (7Be) = 0.56 ± 0.1 (1 σ)

which is consistent with the number derived from the global fit to all solar and reactor experiments (S. Abe et al., arXiv: 0801.4589v2)

 P_{ee} (7Be) = 0.541 ± 0.017

What can Borexino say about other solar v sources?

Example of calibration data

Overall analysis in progress : results in the next months

Background: ²³²Th and ²³⁸U content

Beyond 2010 – Cape Town – 1-6 Feb. 2010

D. D'Angelo – Borexino coll. INFN

Background: ²¹⁰Po and ⁸⁵Kr

