The TeV Universe: *VHE γ-ray source populations*

Felix Aharonian *Dublin Institute for Advanced Studies, Dublin Max-Planck Institut fuer Kernphysik, Heidelberg*

BEYOND 2010: 5th International Conference on the Standard Models of Particle Physics, Cosmology and Astrophysics, Cape Town, South Africa, 1-6 Feb 2010

Gamma-Ray Astronomy

a branch of astrophysics/astroparticle-physics for study of the sky in MeV, GeV, TeV (and more energetic) photons

provides crucial window in the cosmic E-M spectrum for exploration of non-thermal phenomena in the Universe in their most energetic, extreme and violent forms

'the last window' in the spectrum of cosmic E-M radiation

the last E-M window ... 15+ decades:

LE or MeV: 0.1 - 100 MeV (0.1 - 10 + 10 - 100)HE or GeV: 0.1 - 100 GeV (0.1 - 10 + 10 - 100)VHE or TeV: 0.1 - 100 TeV (0.1 - 10 + 10 - 100)UHE or PeV: 0.1 - 100 PeV (only hadronic)EHE or EeV: 0.1 - 100 EeV (unavoidable because of GZK)

low bound - nuclear gamma-rays, upper bound - highest energy cosmic rays

the window is opened in MeV, GeV, and TeV bands:

LE,HE	domain of <u>space-based</u> astronomy
VHE,	domain of <u>ground-based</u> astronomy

potentially 'Ground-based γ -ray astronomy' can cover five decades (from 10 GeV to 1 PeV), but presently it implies 'TeV γ -ray astronomy'

1MeV=10⁶ eV, 1GeV=10⁹ eV, 1TeV=10¹² eV, 1PeV=10¹⁵ eV 1EeV=10¹⁸ eV

why gamma-rays?

gamma-rays – <u>unique</u> carriers of information about <u>high energy processes</u> in the Universe

- are effectively produced in both electromagnetic and hadronic interactions
- penetrate (relatively) freely throughout intergalactic and galactic magnetic and photon-fields
- are effectively detected
 by space-based and ground-based detectors

extreme physical conditions...

generally the phenomena relevant to HEA generally proceed under extreme physical conditions in environments characterized with

- > huge gravitational, magnetic and electric fields,
- ▶ very dense background radiation,
- relativistic bulk motions (black-hole jets and pulsar winds)
- *shock waves, highly excited (turbulent) media, etc.*

any coherent description and interpretation of phenomena related to high energy cosmic gamma-rays requires knowledge and deep understanding of many disciplines of experimental and theoretical physics, including

> nuclear and particle physics, quantum and classical electrodynamics, special and general relativity, plasma physics, (magneto) hydrodynamics, etc.

> > and (of course) Astronomy/Astrophysics

TeV gamma-ray astronomy - a success story

over last several years the field has bee revolutionized

- **before** "astronomy" with several sources (Astroparticle Physics rather than Astronomy)
- **now** a truly astronomical discipline with characteristic key words: *energy spectra, images, lightcurves, surveys...*

with tens (=>100) detected G & EXG sources and two well established detection techniques in the energy interval between 0.1 TeV to 100 TeV

the major factors which make possible this success?

several factors... but basically thanks to the lucky combination of two:

- ✓ great potential of the detection technique
- effective acceleration of TeV/PeV particles on all astronomical scales (coupled with favourable conditions for production of gamma-rays)

detectors of high energy gamma-rays

"direct" detection of LE/HE gamma-rays - possible from space, but can be effective below 10 (100?) GeV

"indirect" detection of VHE gamma-rays - possible from ground, but is effective above 100 (10?) GeV

recently: Fermi LAT - detection of gamma-rays up to 100 GeV MAGIC - detection of gamma-rays down to 100 GeV

very good agreement of measured fluxes around 100 GeV !

Ground Based Gamma-Ray Astronomy

presently provides the VHE window in the spectrum of cosmic E-M radiation

0.1 TeV and 100 TeV => TeV (VHE) gamma-ray Astronomy *)

with a potential for extension of the energy domain

- below 100 GeV down to 10 GeV: GeV (HE) gamma-ray Astronomy
- ➢ above 0.1 PeV up to 1 PeV: PeV (UHE) gamma-ray Astronomy

in foreseeable future (hopefully) => GeV-TeV-PeV astronomy

Fermi: $S_{eff} = 1m^2$ at 1GeV

extension down to 10GeV and up to 1PeV

effective area: $0.3m^2$ at 1 TeV $10m^2$ at 10 TeV => several events from a "1Crab" source per 1 year

neutrino telescpes -- "slow" detectors

nevertheless first (major) discoveries are expected from burst type phenomena like blazar flares or GRBs

H.E.S.S. - High Energy Stereoscopic System

one of the current 3 (HESS, MAGIC, VERITAS) major IACT arrays

towards next generation IACT Arrays:
 ✓ an order of magnitude better sensitivity
 ✓ broader energy coverage: 10¹⁰ to 10¹⁵ eV

from HESS/MAGIC/VERITAS to CTA, AGIS...

Future

- aim? sensitivity: $F_E => 10^{-14} \text{ erg/cm}^2 \text{ s}$ (around 1TeV)
- realization ? 1 to 10 km² scale 10m+ aperture IACT arrays
- timescales short (years) no technological challenges
- price no cheap anymore, but still reasonable
- three energy regimes with different objectives and goals
- ✓ "classical" 0.1 TeV 30 TeV more sources/population studies
- ✓ a few GeV -100 GeV
 powerful timing explorer
- ✓ 3- TeV -300 TeV searching for PeVatrons

0.1-1 TeV threshold all sky monitor:

"HAWK" (an analog of Fermi in VHE band with comparable angular and energy flux sensitivity)

good performance => high quality data => solid basis for theoretical studies

Shower particle Technique

Water Pool

Photosensors

from Milagro to HAWC - bigger and higher: to reduce energy threshold and increase sensitivity

HAWC: High Altitude Water Cherenkov

all sky monitor with flux sensitivity 10^{-12} erg/cm² s similar to *Fermi LAT* but in the TeV energy domain

The Fascinating TeV Sky

first lesson from recent observations: Universe is full of *Extreme Accelerators* - TeVatrons and PeVatrons

machines where acceleration proceeds with efficiency close to 100% efficiency ?

- (i) fraction of available energy converted to nonthermal particles in PWNe and perhaps also in SNRs, <u>can be as large as 50 %</u>
- (ii) maximum (theoretically) possible energy achieved by individual particles acceleration rate close to the <u>maximum (theoretically) possible rate</u> : $t_{acc} \sim r_L/c$

sometimes efficiency can "exceed" 100% (!) e.g. at CR acceleration in SNRs in Bohm diffusion regime with amplification of B-field by CRs ($E_{max=} \sim B (v/c)^2$) this effect provides the extension of the spectrum of Galactic CRs to at least 1 PeV

"> 100% efficiency" because of nonlinear effects: acceleration of particles creates better conditions for their further acceleration

VHE gamma-ray observations:

"Universe is full of extreme accelerators on all astronomical scales"

Extended Galactic Objects Shell Type SNRs \checkmark Giant Molecular Clouds \checkmark Star formation regions \checkmark Pulsar Wind Nebulae \checkmark **Compact Galactic Sources** Binary pulsar PRB 1259-63 \checkmark LS5039, LSI 61 303 - microquasars? \checkmark Cyg X-1 ? (a BH candidate) \checkmark **Galactic Center Extragalactic objects** M87, Cen A - a radiogalaxy \checkmark TeV Blazars - with redshift from 0.03 to 0.18 \checkmark \checkmark NGC 253 and M82 - starburst galaxies GRBs (Fermi LAT; photons of tens of GeVs at z > 1) \checkmark

and a large number of yet unidentified TeV sources ...

Potential Gamma Ray Sources

Extragalactic Sources

Major Scientific Topics

major topical areas

- origin of galactic and exttragalactic cosmic rays
- physics and astrophysics of relativistic outflows (jets and winds)
- high energy processes at extreme conditions (e.g. close to BHs)
- cosmological issues Dark Matter, Extragalactic Background Light (EBL)

.

Galactic TeVatrons and PeVatrons – particle accelerators responsible for cosmic rays up to the "knee" around 1 PeV

One of the highest priorities of TeV astronomy: experimental tests/demonstration that young SNRs operate as PeVatrons, and provide the bulk of the flux of Galactic CRs up to 10¹⁵ eV

> Pulsars/Plerions ? OB, W-R Stars ? Microquasars ? Galactic Center ?

* the source population responsible for the bulk of GCRs are PeVatrons?

RXJ1713.7-4639

TeV γ -ray image - shell type morphology: shock acceleration of p or e in the shell To energies exceeding 100TeV

$$\gamma$$
-rays from pp -> π° => 2 γ ?
 $\alpha_{\rm p} \sim 2$ and $E_0 \sim 100 {\rm ~TeV}$

and with just "right" energetics Wp=10⁵⁰ (n/1cm⁻³)⁻¹ erg/cm³

but IC canot be immediately excluded...

self-consistent (nonlinear) consideration of SNR including forward and reverse shocks

hadronic model

leptonic model

Wp > 5 10^{50} erg, p/e > 10^{4} good spectral fit

Wp < 10^{50} erg, p/e ~ 100 bad spectral fit

Zirakashvili, FA, 2009

"composite" model - dense clouds in a very low density shell?

Zirakashvili, FA, 2009

gamma-radiation between 100 GeV and 10 TeV is dominated by IC but at low, E< 10 GeV, and ultra-high, E>10 TeV, energies γ -rays are contributed mainly from pp interactions produced in dense condensations

has all advantages of leptonic and hadronic models...

recent results from AGILE and Fermi LAT support this scenario ?! correlations of GeV and >10TeV gamma-rays with CO maps ?

(a)

Crab Nebula – a perfect PeVatron of electrons (and protons ?)

 η =1 – minimum value allowed by classical electrodynamics Crab: hv_{cut} = 10MeV: acceleration at 1 to 10 % of the maximum rate (η =10-100)

maximum energy of electrons: $E_{\gamma}=100 \text{ TeV} \implies E_e > 100 (1000) \text{ TeV} \implies B=0.1-1 \text{ mG}$ - very close the value independently derived from the MHD treatment of the wind

* for comparison, in shell type SNRs DSA theory gives $\eta = 10(c/v)^2 = 10^4 - 10^5$

FIG. 9.— The spectral energy distribution of the Crab Nebula from soft to very high energy γ -rays. The fit of the synchrotron component, using COMPTEL nd LAT data (blue dashed line), is overlaid. The predicted inverse Compton spectra from Atoyan and Aharonian (1996) are overlaid for three different values of the mean magnetic field: 100 μ G (solid red line), 200 μ G (dashed green line) and the canonical equipartition field of the Crab Nebula 300 μ G (dotted blue line). Leferences: CGRO COMPTEL and EGRET: Kuiper et al. (2001); MAGIC: Albert et al. (2008); HESS: Aharonian et al. (2006); CANGAROO: Tanimori et al. (2007); VERITAS: Celik (2007); HEGRA: Aharonian et al. (2004); CELESTE: Smith et al. (2006)

results from Fermi LAT - confirmation of IC origin of TeV emission!

another TeV PWN: HESS J1825/PSR J1826

energy-dependen image !

red –	below 0.8 TeV
yellow –	0.8TeV -2.5 TeV
blue –	above 2.5 TeV

Pulsar's	period:	110 ms,	age:	21.4 kyr,
		distance	: 3.9	+/-0.4 kpc

the γ -ray luminosity is comparable to the TeV luminosity of the Crab Nebula, while the spindown luminosity is two orders of magnitude less ! Implications ?

(a) magnetic field should be significantly less than $10\mu G$ (<1 μG ?)

but even for L_e=L_{rot} this condition alone is not sufficient to achieve 10 % γ-ray production efficiency (Compton cooling time of electrons on 2.7K CMBR exceeds the sotce age) (b) the spin-down luminosity in the past was much higher (very low B-field)

gamma-rays from binary systems

microqusars or binary pulsars?

PSR1259 - binary pulsar (TeV) Cyg X-3 - microquasar (GeV)

independent of the answer – particle acceleration is linked to (sub) relativistic outflows

LS5039 and LS I +61 303 as TeV gamma-ray emitters

<u>scenarios?</u> γ-ray production region within and outside the binary system cannot be excluded

<u>periodicity expected?</u> yes — because of periodic variation of the geometry (interaction angle) and density of optical photons — as target photons for IC scattering and $\gamma\gamma$ absorption, as a regulator of the electron cut-off energy; also because of variation of the B-field, density of the ambient plasma (stellar wind), ...

periodicity detected ! is everything OK ?

may be OK, but a lot of problems and puzzles with interpretation of the data ...

modulation of the gamma-ray signal? a quite natural reason (because of $\gamma - \gamma$ absorption), but we see a different picture... anisotropic IC scattering? yes, but not only ...

recent detection of GeV gamma-rays by Fermi LAT and AGILE should help to understand better the origin of the compact object

Takahashi et al. 2009

□ can electrons be accelerated to > 20 TeV in presence of radiation? yes, but accelerator should not be located deep inside the binary system, and even at the edge of the system $\eta < 10$

does this excludes the model of "binary pulsar"
 yes, unless the interaction of the pulsar and stellar winds create a
 relativistic bulk motion of the shocked material (it is quite possible)

10

5

3 2

wind flow line

⁻lux (>380 GeV) ·10⁻¹²cm⁻² s⁻¹

the target photon density is a strict function of time, thus the only unknown parameter is B-field? Predictable X and gamma-ray fluxes ?

unfortunately more unknown parameters - adiabatic losses, Doppler boosting, etc. One needs deep theoretical (especially MHD) studies to understand this source

time evolution of fluxes and energy spectra of X- and gamm-rays contain unique information about the shock dynamics, electron acceleration, B(r), plus ... a unique probe of the Lorentz factor of the cold pulsar wind

Probing the wind Lorentz factor with comptonizied radiation

the effect is not negligible, but not sufficient to explain the lightcurve Loretz factors exceeding 10⁶ are excluded

Blazars – sub-class of AGN dominated by nonthermal/variable broad band (from R to γ) adiation produced in relativistic jets close to the line of sight, with massive Black Holes as central engines

FIG. 2.—Geometry of the source. The radiating region, denoted by short cylinder of dimension *a*, moves along the jet with pattern Lorentz factor Γ_p . Underlying flow moves with Lorentz factor Γ , which may be different.

y-rays from >100 Mpc sources - detectable because of the Doppler boosting

TeV emission from Blazars

<u>Large Doppler factors</u>: make more comfortable the interpretation of variability timescales (larger source size, and longer acceleration and radiation times), reduces (by orders of magnitude) the energy requirements, allow escape of GeV and TeV γ -rays ($\tau_{\gamma\gamma} \sim \delta_{j}^{6}$)

<u>Uniqueness</u>: Only TeV radiation tells us unambigiously that particles are accelerated to high energies (one needs at least a TeV electron to produce a TeV photon) in the jets with Doppler factors > 10 otherwise gamma-rays Cannot escape the source due to severe internal photon-photon pair production

<u>Combined with X-rays</u>: derivation of several basic parameters like B-field, total energy budget in accelerated particles, thus to develope a quanititative theory of MHD, particle acceleration and radiation in relativistic jets, although yet with many conditions, assumptions, caveats...

Hadronic vs. Electronic models of TeV Blazars

SSC or external Compton – currently most favoured models:

- easy to accelerate electrons to TeV energies
- easy to produce synchrotron and IC gamma-rays
 recent results require more sophisticated leptonic models

Hadronic Models:

- > protons interacting with ambient plasma very slow process: $t_{pp} \sim 10^{15} (n/1 cm^{-3})^{-1} sec$
- protons interacting with photon fields low efficiency + severe absorption of TeV γ-rays
- proton synchrotron very large magnetic field B=100 G + accelaration rate c/r_g "extreme accelerator" (of EHE CRs) Poynting flux dominated flow

variability can be explained by nonradiative losses in expense of increase of total energetics, but as long as Doppler factors can be very large (up to 100), this is not a dramatic issue : $L \propto \delta^4$

Synchrotron radiation of an extreme proton accelerator

synchrotron radiation of protons: a viable radiation mechanism

 $E_{max} = 300 \ \eta^{-1} \ \delta j$ GeV requires extreme accelerators: $\eta \sim 1$

 E_{cut} =90 (B/100G)(Ep/10¹⁹ eV)² GeV t_{synch}=4.5x10⁴(B/100G) ⁻² (E/10¹⁹ eV)⁻¹ s t_{acc}=1.1x10⁴ (E/10¹⁹) (B/100G) ⁻¹ s

in TeV blazars the synchrotron radiation of protons is much more effective cooling process compared to photomeson reactions => no high energy neutrinos

new blazars detected at large z: HESS/MAGIC at z> 0.15 !

condition: corrected for IG absorption γ -ray spectrum not harder than E- Γ (Γ =1.5)

➔ upper limit on EBL

EBL (almost) resolved at NIR ?

two options:

claim that EBL is "detected" between O/NIR and MIR

or

propose *extreme* hypotheses, e.g.

violation of Lorentz invariance, non-cosmological origin of z ...

or propose *less dramatic (more reasonable)* ideas, e.g.

- > very specific spectrum of electrons and no cooling $\rightarrow vFv \sim E_{\gamma}^{1.33}$
- > TeV emission from blazars due to comptonization of cold relativistic winds with bulk Lorentz factor Γ > 10⁶
- internal gamma-ray absorption

Gamma Rays from a cold ultrarelativistic wind ?

new "trouble-makers"

internal gamma-gamma absorption

can make the intrinsic spectrum arbitrary hard without any real problem from the point of view of energetics, given that it can be compensated by large Doppler factor, $\delta j > 30$

Model: internal γ - γ absorption inside and outside the blob

1ES 0229+200

assuming optical depth $\tau_{\gamma\gamma} \sim 3-7$, $\Gamma \sim 10$, one can explain not only gamma-ray spectra (after) correction for intergalactic absorption), but also the synchrotron emission by secondary e⁺e⁻

short TeV flares of PKS2155-304 on min-timescales

several min (200s) variability timescale => $R=c \Delta t_{var} \delta_j = 10^{14} \delta_{10}$ cm for a 10⁹Mo BH with 3Rg = 10¹⁵ cm => $\delta j > 100$, i.e. close to the accretion disk (the base of the jet), the bulk motion $\Gamma > 100$

M 87 – evidence for production of TeV gamma-rays close to BH?

- Distance: ~16 Mpc
- central BH: $3 \times 10^9 M_0^{(*)}$
- Jet angle: ~30° => not a blazar!
 discovery (>4σ) of TeV γ-rays
 by HEGRA (1998) and confirmed
 recently by HESS/VERITAS, MAGIC
 *) recently 6.4 x 10⁹ M_o
 arXiv: 0906.1492 (2009)

M87: light curve and variabiliy HESS Collaboration 2006, Science, **314**,1427

because of very low luminosity of the core in O/IR: $L_{IR} \approx 10^{-8} L_{Edd}$ TeV gamma-rays can escape the production region New! NRAO and VERITAS/MAGIC/HESS: *Science, July 2, 2009* Simultaneous TeV and radio observations allow localization of gamma-ray production region within 50 R_s

monitoring of the M87 inner jet with VLBA at 43 GHz (ang. res. 0.21x0.43 mas) revealed increase of the radio flux by 30 to 50% correlated wit the increase in TeV gamma-ray flux in Feb 2008

conclusion? *TeV gamma-rays are produced in the jet collimation region within 50 Rs around BH*

Unidentified (yet) TeV Gamma Sources:

why so many?

gamma-ray production: particle accelerator + target

existence of a powerful particle accelerator by itself is not sufficient for γ -radiation; an additional component – a dense target - is required

any gamma-ray emitter coincides with the target, but not necessarily with the "primary" source/particle-accelerator

TeV gamma-ray sources around W28: CRs from an old SNR interacting with nearby clouds?

1.

HESS J0835-456 (Vela X): a PWN (plerion)

gamma-rays are produced due to IC scattering of multi-TeV electrons on 2.7 K, X-rays - due to synchrotron radiation of same electrons

since 2.7 K MBR is the main target field, TeV images reflect spatial distributions of electrons Ne(E,x,y); coupled with synchrotron X-rays, TeV images allow measurements of B(x,y)

2.

TeV gamma-rays from GC

GC – a unique site that harbors many interesting sources packed with unusually high density around the most remarkable object $3x10^6$ Mo SBH – Sgr A*

many of them are potential γ-ray emitters - Shell Type SNRs Plerions, Giant Molecular Clouds Sgr A * itself, Dark Matter ...

all of them are in the FoV an IACT, and can be simultaneously probed down to a flux level 10⁻¹³ erg/cm²s and localized within << 1 arcmin

Galactic Center

90 cm VLA radio image

 γ -rays from GMCs in GC: a result of an active phase in Sgr A* with acceleration of CRs some 10⁴yr ago? Sgr A* or the central diffuse < 10pc region or a plerion? [no indication for variation]

an unidentified source

Westerlund-2: a rich young star cluster gamma-ray source? - colliding stellar winds, supernova shocks, PWN electrons, protons, nuclei, ...

"jet" and "arc" in CO anisotropic SN explosion (a hypernova remnant?)

origin of the TeV source - an old proton source/remnant of a SN explosion

5. Pair Halos

TeV Gamma-rays from distant extragalactic sources, d > 100 Mpc interact effectively with Extragalactic Background Radiation (EBL; (0.1-100 mm)

when a gamma-ray is absorbed its energy is not lost ! absorption in EBL leads to E-M cascades suppoorted by

- > Inverse Compton scattering on 2.7 K CMBR photons
- photon-photon pair production on EBL photons

if the intergalactic field is sufficiently strong, B > $10^{-11}G$, the cascade e⁺e⁻ pairs are promptly isotropised

formation of extended structures - Pair Halos

how it works?

 $\Theta = \lambda(E\gamma_0)/d$ λ(Εν 20000000 d

energy of primary gamma-ray $E_{\gamma,0} \simeq 10 (E_{\gamma}/100 {\rm GeV})^{1/2} {
m TeV}$

mean free path of parent photons $\begin{array}{l} \lambda(\mathsf{E}_{\gamma,0})\sim\mathsf{d}\times\Theta\\ \text{information about EBL flux at}\\ \lambda\simeq 10(\mathsf{E}_{\gamma}/100\text{GeV})^{1/2}\ \mu\text{m} \end{array}$

gamma-radiation of pair halos can be recognized by its distinct variation in spectrum and intensity with angle \bigcirc and depends rather weakly (!) on the features of the central VHE source

two observables – <u>angular</u> and <u>energy</u> distributions allow to disentangle two variables $u_{EBL}(\lambda, z)$ and $d(H_0)$!

Pair Halos as Cosmological Candles

- □ informationabout EBL density at fixed cosmological epochs given by the redshift of the central source <u>unique</u>!
- estimate of the total energy release of AGN during the active phase
- \Box objects with jets at large angles <u>many more</u> γ -ray emitting AGN

but the advantage of the large Doppler boosting of blazars disapeares: beam > isotropic source

therefore very powerful central objects needed

QSOs and Radiogalaxies (sources of EHE CRS ?) as better candidates for Pair Halos this requires low-energy threshold detectors

Brightness distributions of Pair Halos

