

Searches for New Heavy Quarks with the CMS Detector at the LHC

Silvia Costantini Ghent University CMS Collaboration, CERN

LHC
CMS
Searches for 4th Generation b' Quarks
Searches for Exotic partners of the top quark

Emphasis on prospects for searches with early data at 10 TeV More on http://cms-physics.web.cern.ch/cmsphysics/CMS_Physics_Results.htm

LHC

Large Hadron Collider

- approved in 1994
- 26.66 km tunnel, ~100 m underground
- 1232 superconducting twin dipoles, 8.33 T at 1.9 K
- pp collisions, design E_{beam}=7 TeV
- Design Luminosity: 10 ³⁴ cm-² s-¹, with 100 fb-¹ per year per experiment one crossing every 25 ns (40 MHz)

- two general purpose detectors: ATLAS, CMS
- two dedicated detectors: ALICE, LHCb
- two special purpose experiments:

TOTEM (Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC), LHCf (forward production of neutral particles in proton-proton collisions at extremely low angles)

Starting Date: November 2009

- First collisions in November/December 2009 (first beam in September 2008)
- Physics run in 2010: 3.5 + 3.5 TeV foreseen (to be confirmed)

Schedule on: http://lhc-commissioning.web.cern.ch/lhc-commissioning/ February 1-6, 2010 Silvia Costantini - BEYOND10

Large Hadron Collider

- First collisions on Nov.23 at 900 GeV
 - ~0.1 Hz collisions
 - L ~ few 10²⁴ cm⁻²s⁻¹
- Mid-December: collisions at 900 GeV and 2236 GeV
 - ~10 Hz collisions
 - L ~ few 10²⁶ cm⁻²s⁻¹

Expectations for 2010 (to be confirmed):

- integrated luminosity up to 500 pb⁻¹
- 1 month commissioning and pilot physics
- 1-2 month @ 7 TeV
- 1 month Technical Stop
- 4-5 months @ >7 TeV
- Ultimate values:
 - 14 TeV, L ~ 10^{34} cm⁻²s^{-1,} ~ 10^{9} Hz collisions

CMS

crane for lowering CMS from 2006

CMS Detector: assembled on surface and then lowered between end 2006 and beginning 2008

Jan. 2008: lowering the last element (YE-1) of the CMS detector

CMS cavern

.....

First Collisions

- Collision data taken at:
 - 900 GeV (500 k events)
 - 2.36 TeV (50 k events)

CMS has taken good quality data:

- > 99% of detector channels operational
- high data-taking efficiency
- data analyzed very quickly
- first results to appear soon

First collision event - 23/11/09

http://cms.web.cern.ch/cms/Media/Images/EventDisplays/index.html

Barrel muon candidate

Detector Performance

- Detector performance is according to design
- First data distribution agree well with simulation
- Results on:
- http://cms-physics.web.cern.ch/cmsphysics/CMS_Physics_Results.htm
- CMS presentation at Aspen 2010: <u>http://indico.cern.ch/conferenceOtherViews.py?view=standard&confId=73860</u>

Detector Performance

Calorimetry (π^0 , η), tracking (K_S ,Λ, φ), muons, ...

Missing E_T, jets, particle ID (dE/dx), …

Dimuon event at 2.36 TeV • $p_T(\mu_1) = 3.6 \text{ GeV/c}, p_T(\mu_2) = 2.6 \text{ GeV/c}$ • $M(\mu_1, \mu_2) = 3.03 \text{ GeV/c}$

Key points for Searches

- Physics objects (electrons, muons, jets, missing E_T...) are well understood
- Priority to processes with clean final states including leptons
- E.g. very low SM background for final states with same sign dileptons and trileptons (examples in this talk)
- Exploit excellent performances of CMS detector, in particular ECAL and Muon system for final states with electrons and muons

Searches for New Heavy Quarks at CMS

4th Generation Quarks: Motivations

- In the Standard Model: at least three generations of quarks to describe CP violation
- LEP measurements of Z width: $N_v = 2.92 \pm 0.05$
- However 4th family with heavy neutrino $(M_v > M_z/2)$ is not excluded
- Additional quark generation may account for the asymmetry between matter and anti-matter [arXiv:0803.1234] (SM source of CP violation is too small)
- EW precision measurements favour | M_t'-M_b' < M_W [PhysRevD.77.037302]
 - Experimental limits from the Tevatron (assuming BR = 100%):
 - $M(b' \rightarrow tW) > 325 \text{ GeV } [CDF/PHYS/EXO/PUBLIC/9759]$
 - $M(t' \rightarrow qW) > 311 \text{ GeV } [CDF/PHYS/EXO/PUBLIC/9234]$
 - $M(b' \rightarrow bZ) > 268 \text{ GeV [arXiv:0706.3264]}$

 ~ 2 TeV

2.7 fb⁻¹

4th generation quarks

Bottom-like (b') in this talk

Heavy b' : • b' ->tW

16

Light b'

EXO-08-013

- ► Signal: b′b′ -> cWbZ
 - Assume BR(b'->bZ)=5%,10%,20% BR(b'->cW)= ~90%
 - Tri-leptonic final state Signature: 3 leptons (WZ) and 2 jets
- Background:
 - Z+jets, WZ+jets, tt
 - Background rejection by requiring
 - one Z and one W
 - two isolated jets from the lepton candidates

CMS	Light	b': F	Results
M(b')	200 GeV	225 GeV	250 GeV
Cross section	113 pb	65 pb	11 pb
Exp. Yields @1fb ⁻¹	29.9	16.7	11.4
Exp. Bkg. @1fb ⁻¹		13.8	
Significance	3.8 σ	1.9 σ	1.1 σ

Evidence for the existence of light b' with 1 fb⁻¹

(with 200 pb⁻¹ if BR is higher)

February 1-6, 2010

EXO-09-012

Heavy b'

- ▶ b ' -> tW (mass > 255 GeV)
- Decay chain with 4 W bosons
 b'b' -> tW tW -> bbW+W-W+W-

 $b'\overline{b'} \rightarrow tWtW$ $\vdash qqqq\ell^{\pm}\nu\ell^{\pm}\nu \\ \downarrow qqqq\ell^{\pm}\nu\ell^{\mp}\nu\ell^{\pm}\nu$

Possible final states:

4 leptons + 2 jets, **3 leptons + 4 jets, 2 leptons + 6 jets**, 1 lepton + 8 jets, 0 lepton + 10 jets

- Signal selection: Trilepton and same sign dilepton final states with multijets: low SM background
- At least one energetic lepton with p_T > 35 GeV
- At least one hard jet with p_T > 85 GeV
- Background: tt+jets, tt+W/Z+jets, W/Z+jets
- Additional background suppression by requiring: Z invariant mass veto, lepton-jet separation (rejects leptons inside jets)

Heavy b': Results

M(b')	300 GeV	400 GeV	500 GeV	
Cross section	13.6 pb	2.8 pb	0.78 pb	
Exp. Yields @200pb-1	34.1	10.6	3.5	
Exp. Bkg. @200pb-1		1.1 _{-0.7} +1.2		
Significance	9.0 σ	3.7 σ	1.4 σ	
			Exclude b' m	asses

Silvi

$3\,\sigma$ evidence up to 400 GeV

Exclude b' masses less than 485 (405) GeV with 200 (60) pb⁻¹

Sensitivity exceeds that at the Tevatron with only few tens pb⁻¹

EXO-08-008

Exotic partners of top quark

- Natural, non-supersymmetric solutions of the hierarchy problem generally require fermionic partners of the top quark, with masses not much heavier than ~500 GeV
- Pair production of top partners at LHC [Contino and Servant: arXiv:0801.1679 (2008)]: T_{5/3} with Q_e = 5/3 and B with Q_e = -1/3
- ▶ Both T_{5/3} and B decay into t(bW)W
- Same sign dileptons plus multijet final states $l\pm l\pm + n \text{ jets } (n \ge 5)$

Top pair production the major background, reduced by requiring two isolated same sign leptons and five or more jets

invariant mass

February 1-6, 2010

peak (T_{5/3})

Silvia Costantini - BEYOND10

- T5/3 and B expectations combined
- Exclude masses up to 400 GeV with 80 pb-1, 500 GeV with 340 pb⁻¹

Stringent limits can be set at the LHC with early data

February 1-6, 2010

Silvia Costantini - BEYOND10

Summary

- Long physics run at LHC in 2010
- CMS excellent detector for BSM analyses
- Evidence for new physics could be obtained in CMS during the first period of the LHC
- Early data (50-500 pb⁻¹) will allow to reach sensitivity beyond LEP and Tevatron
- Good understanding of the detector performances and possible systematic effects will be achieved in situ at LHC, using data driven methods whenever possible
- Showed only a thin fraction of CMS BSM searches
- Much more can be found on: http://cms-physics.web.cern.ch/cms-physics/CMS_Physics_Results.htm

Thank you

Additional slides

Silvia Costantini - BEYOND10

pp cross section

Process	Ev./s	Ev./yr	Other machines
$W \rightarrow e \nu$	15	10 ⁸	10 ⁴ LEP/ 10 ⁷ Tev.
$Z \rightarrow ee$	1.5	107	10⁷ LEP
tt	0.8	107	10 ⁴ Tev.
bb	105	10 ¹²	10 ⁸ Belle/ BaBar
gg	0.001	104	-
H M=0.8TeV	0.001	104	-
OCD jets P _T >200 GeV	102	109	107 Tev

LHC is going to be a B-, top-, W/Z, Higgs- and SUSYfactory!

Silvia Costantini - BEYOND10

Event Rate

- N = no. events / second
- L = luminosity = 10 ³⁴ cm⁻² s⁻¹
- Total cross-section = 70 mb
- E = no. events / bunch crossing
- $\Delta t = bunch spacing = 25 ns$
- N = $L x \sigma = 7 10^8 Hz$
- E = N / ∆t ~ 20 events / bunch crossing

LHC will produce ~20 overlapping p-p interactions every 25 ns Clean final states needed!

Large Hadron Collider

- Planned start up: 2009.
- Particles used: Protons and heavy ions (Lead, full stripped 82+)
- Circumference: 26,659 m.
- Injector: SPS
- Injected beam energy: 450 GeV (protons)
- Nominal beam energy in physics: 7 TeV (protons)
- Magnetic field at 7 TeV: 8.33 Tesla
- Operating temperature: 1.9 K
- Number of magnets: ~9300
- Number of main dipoles: 1232
- Number of quadrupoles: ~858
- Number of correcting magnets: ~6208
- Number of RF cavities: 8 per beam; Field strength at top energy ≈ 5.5 MV/m
- ► RF frequency: 400.8 MHz
- Revolution frequency: 11.2455 kHz.
- Power consumption: ~120 MW
- Gradient of the tunnel: 1.4%
- Difference between highest and lowest points: 122 m.

Barrel: 60200 PbW0₄ crystals, endcap 15000 crystals

• Energy resolution: $\sigma/E \sim 2.7\% / \sqrt{E (GeV) + 0.5\% + 150 MeV/E}$

added in quadrature

Stochastic term: depends on photoelectron statistics: LY ~ 4-5 pe/MeV Constant term: shower containment, crystal non-uniformity, crystal intercalibration Noise term: electronic noise, pile-up

- Angular resolution: $\sigma_{\theta} = 50 \text{ mrad} / \sqrt{E}$
- Transverse granularity $\Delta \eta \ge \Delta \phi = 0.0175 \ge 0.0175$ Corresponds to crystal front face (22 x 22 mm²) and matches Mol. Radius = 21.9 mm

Design en. resolution of 0.5% required for $H \rightarrow \gamma \gamma$ measurement – detector calibration

Find calibration constants c_i

- Lab. measurements $\rightarrow \sim 4\%$
- Cosmics \rightarrow 3-4%
- Test beam precalibration \rightarrow 2-4%
- Minimum bias events $\rightarrow 2\%$
- $Z \rightarrow e+e-, W \rightarrow ev \rightarrow 0.5\%$

February 1-6, 2010

E (GeV) = $\Sigma c_i ADC_i$ (crystal light yield, APD gain)

(only a few supermodules)
(fast calibration using φ symmetry)
(design value, with tracker and 2 months)

Silvia Costantini - BEYOND10

CMS: crystal calorimeter

Why PbWO₄ crystals?

Scintillating crystals are the most precise calorimeters for energy measurements
Excellent energy resolution over a wide range
High detection efficiency for low energy e and γ
Structural compactness

- simple building blocks for mech. assembly
- hermetic coverage
- fine transverse granularity
- •Tower structure eases event reconstruction

- straightforward cluster algorithms for energy and position

- electron/photon identification

PWO Drawback: low Light Yield: ~10 pe/MeV (with PMT and tyvek wrapping at T=18 oC) Solution: APD's internal gain (~50)

Physics Requirements	CMS-ECAL Solution
Very good resol. for high energy e/g	Crystal calorimeter
High LHC lumin.: 10^{34} cm ⁻² s ⁻¹	PWO is radiation hard
LHC bunch separation: 25 ns	PWO is fast: 80% light collected within 25 ns
Compact det. with high granularity	PWO has $X_0 = 0.89$ cm Mol. Radius = 2.2 cm
Magnetic field inside CMS: 4T	Compact solid state photodet. (APD's) in the barrel (Endcaps:VPT's)