

Cuoricino latest results and the way to CUORE

Capelli Silvia for CUORE Coll.

Universita` e Sezione di Milano Bicocca

Beyond 2010, Cape Town

Capelli Silvia, Beyond 2010

Cuoricino latest results and the way to CUORE

slide 1/23

- Neutrinoless Double Beta Decay search with calorimetric technique
- Low temperature calorimeters
- Why TeO₂?
- CUORICINO detector and latest results
- From CUORICINO to CUORE: R&D for bkg reduction
- CUORE status

DBD0v search

DBD is a second order nuclear weak decay of A even-even nuclei: ⁴⁸Ca, ⁷⁶Ge, ¹⁰⁰Mo, ¹¹³Cd, ¹³⁰Te, ¹³⁶Xe,...

DBD2v decay: $(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2v$ SM allowed (observed with $\tau > 10^{19}$ y)DBD0v decay: $(A,Z) \rightarrow (A,Z+2) + 2e^{-}$ Beyond SM (⁷⁶Ge claim $\tau > 10^{25}$ y ^[1])

Experimental signature for DBD0v in direct counting experiments:

peak at Q-value in the electron sum energy spectrum

DBD0v: experimental needs

Sensitivity S_{0v} : lifetime corresponding to the minimum detectable number of events over background at a given confidence level

$$S_{0\nu} \propto \varepsilon \frac{i.a.}{A} \sqrt{\frac{M \cdot T}{\Delta E \cdot b}}$$

- ϵ = Detection efficiency
- i.a. = Isotopic abundance of the DBD candidate
- A = Compound atomic mass
- M = Source mass
- T = Measure live time
- ΔE = Energy Resolution in the ROI
- b = Background in the ROI

Experimental needs for high sensitivity:

- High detection efficiency
- High isotopic abundance
- Large source mass

- Long time measurement
- High energy resolution in the ROI
- Low Background in the ROI

Capelli Silvia, Beyond 2010

The calorimetric technique

In the calorimetric approach source \subseteq detector:

scintillation, phonon-mediated, solid-state, gaseous detectors

- High efficiency (~ 100%)
- High energy resolution (solid-state and phonon detectors)
- Large masses (detector mass up to 1 t are feasible)
- Topology (Xe TPC)

Non calorimetric detectors can perform event reconstruction by tracking but are limited by low efficiency and low energy resolution, and thus by a high contribution from DBD2 ν

Low temperature calorimeters

The bolometric technique was proposed by E. Fiorini and T.O. Niinikoski in 1983 as an alternative to the more standard enriched -⁷⁶Ge diodes. It allows a wider choice of materials (more DBD candidate are therefore exploitable).

Capelli Silvia, Beyond 2010

A bolometer is composed by:

Absorber :

a particle energy deposition originates a temperature rise:

$$\Delta T = \frac{E}{C(T)}$$

Temperature sensor:

It converts the temperature rise in electric signal:

$$R = R_0 \exp\left(T_0/T\right)^{\gamma}$$

Termal link:

Signal wires and absorber supports

Working at very low temperature (~10 mK) and using dielectric and diamagnetic absorbers ΔT becomes measurable (~100 μ K @ 1 MeV)

Why TeO, ?

DBD0v half-life:

$$\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu}(Q, Z) \cdot |M^{0\nu}|^2 \frac{\langle m_{\nu} \rangle}{m_e^2}$$

$$G^{0\nu}(Q,Z)$$
 = Phase Space Factor (÷ Q⁵)
 $|M^{0\nu}|$ = Nuclear Matrix Element

$$\langle m_{\nu} \rangle$$
 = Electron Neutrino Majorana mass

 \Rightarrow TeO₂ is a compound with good mechanical and thermal properties containing ¹³⁰Te. \Rightarrow ¹³⁰Te is a good DBD candidate:

- reasonably favorable theoretical calculation of NME
- high natural Isotopic Abundance (33.8%)
- high DBD transition energy (2527.52 \pm 0.013 keV) ^{[2] [3]}

Capelli Silvia, Beyond 2010

Cuoricino latest results and the way to CUORE

slide 7/23

Capelli Silvia, Beyond 2010

Neutrinoless Double Beta Decay with TeO2 bolometers: past and future

Location: LNGS

LNGS

Natural shield for cosmic rays: 3600 mwe

Muon flux: $(3.2 \pm 0.2) \cdot 10^{-8} \,\mu/s/cm^{2}$ [4]

Neutron flux: $10^{-7} \div 10^{-6} \text{ n/s/cm}^{2}$ [5,6]

Gamma flux below 3 MeV: 0.73 γ /s/cm² [7,8]

Two locations:

Hall A: Cuoricino -> CUORE

Hall C: R&D and final tests for CUORE

Capelli Silvia, Beyond 2010

CUORICINO

- Operated 2003-2008 at LNGS HallA
- Placed in a dilution refrigerator at ~ 10 mK
- Provided with Cu and Pb shields
- 62 TeO, crystals
- I1 planes 4 "big" crystals each (790 g /crystal)
- 2 planes 9 "small" crystals each (340 g/crystal)
- 2 small crystals enriched to 75% in ¹³⁰Te
- 2 small crystals enriched to 82.3% in ¹²⁸Te
- 40.7 kg of TeO₂
- 11.6 kg of ¹³⁰Te

Capelli Silvia, Beyond 2010

Cuoricino latest results and the way to CUORE

slide 10/23

CUORICINO latest result

Updated statistics: ~18.14 kg ¹³⁰Te × y Average FWHM@ROI : 7 keV

 $Bkg@ROI = 0.18 \pm 0.02 \text{ c/keV/kg/y}$

```
T<sup>0ν</sup> (<sup>130</sup>Te) > 2.94 × 10<sup>24</sup> y (90% CL)
```

```
<m,> ≤ 0.21 ÷ 0.72 eV (NME from <sup>[9,10]</sup> -QRPA)
```

- No peak appears at the Q-value (2527.5 keV) and with a ML procedure the 90% C.L. limit for the $T_{1/2}^{0v}$ of ¹³⁰Te is set
- The ⁶⁰Co peak is included in the fit energy window
- The bkg underlying the peak is fit with a flat function
- The limit is evaluated using anticoincidence sum spectra and considering separately big, small and enriched crystals

• For each spectrum is used as the response function a sum of N Gaussians, one for each crystal. The FWHM of each Gaussian is fixed to the characteristic one of each corresponding detector (2615 keV calibration peak).

Analysis of complete CUORICINO data set is being

performed with new software developed for CUORE.

Potential improvements are being tested.

Capelli Silvia, Beyond 2010

Cuoricino latest results and the way to CUORE

slide 12/23

$$S_{0\nu} \propto \varepsilon \frac{i.a.}{A} \sqrt{\frac{M \cdot T}{\Delta E \cdot b}}$$

From CUORICINO to CUORE:

- Increase the mass: a factor ~ 20
- Improve the resolution: reduce ΔE by 40%
- Improve the live-time: improving sistem reliabiliy and duty cicle
- Reduce the bkg in the ROI: target 0.01 c/keV/kg/y (a factor 18)

\Rightarrow Bkg reduction is the most crucial issue

Capelli Silvia, Beyond 2010

Cuoricino latest results and the way to CUORE

988 TeO₂ crystals ~741 kg TeO₂ ~204 kg of ¹³⁰Te

19 towers 13 planes each 4 crystals each

CUORICINO bkg model

The modelization of the CUORICINO background by means of MC simulations has shown that the most probable contribution to the ROI are:

- Multi-Compton events from ²⁰⁸Tl events (²³²Th contamination in the cryostat): $(40 \pm 10)\%$
- Degraded α and β from surface contamination of inert materials facing the crystals: (50 ± 10)% • Degraded α and β from surface contamination of the crystals: (10 ± 5)%

Capelli Silvia, Beyond 2010

Neutrinoless Double Beta Decay with TeO2 bolometers: past and future

slide 14/23

Background reduction achievements

- New holder design to reduce the amount of copper facing the crystals: bkg contribution reduced by a factor ~ 2.
- Shields design and materials selection have been performed in order to keep the overall bulk contribution in the ROI down to 10⁻³ c/keV/kg/y
- TeO₂ crystals bulk contamination: strict protocol for crystal production and quality checks at every production step has been signed.
- Crystals surface contamination: new mechanical treatment developed at LNGS and implemented at crystal factory. Reduction by a factor 4 measured in hall C test facility.
- Surface contamination of the copper facing the crystals: an ultimate test is just finished in the Hall A test facility to compare three different surface treatements: chemical etching, plasma cleaning, polyethilene wrapping.

Further improvement thanks to detector granularity

Capelli Silvia, Beyond 2010

CUORE bkg projection

On the basis of the actual achievements the projection to the CUORE bkg has been evaluated (MC simulations):

Element	DBD rate [10 ⁻³ c/keV/kg/y]	
Crystal bulk	< 1	
Crystal surface	< 3	
Cu mounting bulk	< 0,6	
Cu mounting surface	20 ÷ 40	Target bkg:
Experimental set-up	< 10	< 0.01 c/keV/kg/y
Environmental gammas ^[8]	< 0.4	We are amost there
Environmental neutrons ^[8]	(8,6 +/- 6,06) x 10 ⁻³	
Environmental muons (no VETO) ^[8]	0,104 +/- 0,022	
Capelli Silvia, Beyond 2010 Cuoricino late	est results and the way to C	UORE slide 16/23

CUORE projected sensitivity

Capelli Silvia, Beyond 2010

Cuoricino latest results and the way to CUORE

slide 17/23

G CUORE projected sensitivity in 5 years

CUORE status

suppor

pulse tub

head

ports

- CUORE building and cryostat support structure are completed
- The cryostat has been purchased. Delivery of dilution unit and flanges in 2010
- Production of 988 TeO2 crystals started in 2008: detector suspension 241 already delivered to LNGS
- Electronics designed and is being procured
- Test of first CUORE tower (CUORE-0) under preparation: to be operated in 2011

Capelli Silvia, Beyond 2010

CUORE schedule

Beyond CUORE

$$S_{0\nu} \propto \varepsilon \frac{i.a.}{A} \sqrt{\frac{M \cdot T}{\Delta E \cdot b}}$$

- Relatively inexpensive isotopic enrichment of ¹³⁰Te
- No change needed to the experimental infrastructure
- > 500 kg of ¹³⁰Te
- A factor 3 increase in i.a.
- Active background rejection (mainly alpha rejection) could be achieved by means of surface sensitive detectors ^[11] or scintillating bolometers (different compounds and DBD candidates are being tested: ZnSe, CdWO₄, CdMoO₄...) [see A.Giulianii talk]

Capelli Silvia, Beyond 2010

Conclusions

- Low temperature bolometers are a well established and competitive technique for DBD0v search
- Cuoricino has demostrated the potential of this technique and has provided one of the most stringent limits on $< m_v >$
- Intense R&D and careful material selection and shielding design has been performed to lower background sources limiting the sensitivity for CUORE. We are almost there!
- CUORE, presently under contruction at LNGS, will have the capability of exploring the IH of neutrino mass spectrum
- CUORE data taking is forseen in 2013

Bibliography

[1] H.V.Klapdor-Kleingrothaus, H.V. Krivosheina., Mod. Phys. Lett. A 21:1547, 2006

- [2] M. Redshaw et al. Phys.Rev.Lett.102:212502, 2009
- [3] N. D. Scielzo et al. Phys.Rev.C80:025501, 2009
- [4] MACRO Coll., M.Ambrosio et al. Phys. Rev. D52, 3793, 1995
- [5] F.Arneodo et al. Il Nuovo Cim. 112A, 819, 1999
- [6] P.Belli et al., Il Nuovo Cim. 101A, 959, 1989
- [7] C. Bucci et al. Eur. Phys. J. A 41:155-168, 2009
- [8] F.Bellini et al. Astrop. Phys, In press
- [9] V.Rodin et al. Nucl. Phys. A766 (2006) 107
- [10] V.Rodin et al. arXiv:nucl-th/0706.4304v1
- [11] L.Foggetta et al. Appl. Phys. Lett. 86, 134106, 2005

Backup: Combined sensitivities

Cuoricino latest results and the way to CUORE

Backup 1/4

Backup: CUORE-0 sensitivity

Worst case: Cuoricino bkg = 0.18 c/keV/kg/y Best case: limited by cryostat contamination = 0.06 c/keV/kg/y

Capelli Silvia, Beyond 2010

Cuoricino latest results and the way to CUORE

Backup 2/4

Backup:CUORICINO vs. KK et al. claim

Capelli Silvia, Beyond 2010

Cuoricino latest results and the way to CUORE

Backup 3/4

Backup:DBD0v present situation

Nucleus	Experiment	%	$Q_{\beta\beta}$	Enr	Technique	Τ _{ον} (y)	<m<sub>v></m<sub>
⁴⁸ Ca	Elegant IV	0.19	4271		scintillator	>1.4x10 ²²	7-45
⁷⁶ Ge	Heidelberg- Moscow	7.8	2039	87	ionization	>1.9x10 ²⁵	.12 - 1
⁷⁶ Ge	IGEX	7.8	2039	87	Ionization	>1.6x10 ²⁵	.14 – 1.2
⁷⁶ Ge	Klapdor et al	7.8	2039	87	ionization	1.5x10 ²⁵	.39
⁸² Se	NEMO 3	9.2	2995	97	tracking	>2.1x10 ²³	1.2-3.2
¹⁰⁰ Mo	NEMO 3	9.6	3034	95-99	tracking	>5.8x10 ²³	.6-2.7
¹¹⁶ Cd	Solotvina	7.5	3034	83	scintillator	>1.7x10 ²³	1.7 - ?
¹²⁸ Te	Bernatovitz	34	2529		geochem	>7.7 × 10 ²⁴	.1-4
¹³⁰ Te	Cuoricino	33.8	2529		bolometric	>2.4x10 ²⁴	.2-1.
¹³⁶ Xe	DAMA	8.9	2476	69	scintillator	>1.2x10 ²⁴	1.1 -2.9
¹⁵⁰ Nd	Irvine	5.6	3367	91	tracking	>1.2x10 ²¹	3 - ?

Capelli Silvia, Beyond 2010

Experiment	Author	Isotope	Detector description	Т ^{5у} _{1/2} (у)	<m<sub>v>*</m<sub>
CUORE	Bolometric	¹³⁰ Te	760 kg of TeO ₂ bolometers	2.1 x 10 ²⁶	0.023
COBRA	Ionization	¹³⁰ Te	10 kg CdTe semiconductors	1 x 10 ²⁴	0.71
GERDA	Ionization	⁷⁶ Ge	1 t enriched Ge diodes in liquid nitrogen	2 x 10 ²⁷	0.034
MAJORANA	Ionization	⁷⁶ Ge	0.5 t enriched Ge segmented diodes	4 x 10 ²⁷	0.025
SUPERNEMO	Tracking	⁸² Se	100- 200 kg enriched Nd or Se foils between TPCs	2 x 10 ²⁵	
DCBA	Tracking	¹⁵⁰ Nd	20 kg enriched Nd layers with tracking	2 x 10 ²⁵	0.035
MOON	Tracking	¹⁰⁰ Mo	34 t natural Mo sheets between plastic scintillator	1 x 10 ²⁷	0.036
EXO	Tracking	¹³⁶ Xe	1 t enriched Xe TPC	1.3 x 10 ²⁸	0.013
Xe	Scintillation	¹³⁶ Xe	1.56 t of enriched Xe in liquid scintillato	r 5 x 10 ²⁶	0.066
XMASS		¹³⁶ Xe	10 t of liquid Xe	3 x 10 ²⁶	0.086
CAMEO	Scintillation	^{116}Cd	1 t CdWO ₄ crystals in liquid scintillator	> 10 ²⁶	0.069
CANDLES	Scintillation	⁴⁸ Ca	tons of CaF ₂ crystal in liquid scintillator	1 x 10 ²⁶	
GSO	Scintillation	¹⁶⁰ Gd	2 t Gd ₂ SiO ₅ :Ce cristal scintillator in liquid scintillator	2 x 10 ²⁶	0.065

* using nuclear calculations of Staudt et al. Europhys. Lett 13 (1990) 31