

Neutrino Oscillations with LongBaseLine beams

(Past, Present and very near Future business)

Luca Stanco - INFN Padova

The <u>experimental</u> observation of neutrino oscillations

- A touch of physics
- How the recent history enlighted the path, opened up to new questions and drives us into the future
- MiniBooNE(SBL) and MINOS/OPERA(LBL)
- Expectations...

Here is our START and END point:

the lepton mixing

Why, how, which

In 1998 new history for neutrino begins (as a second life):

- Neutrinos oscillate* (SK and afterwords SNO, K2K ...):
 they own masses
- Neutrinos mix themselves (CHOOZ and afterwords KamLAND ...): MNS matrix

* 41 years after **Pontecorvo** idea on oscillations in 1957

CHOOZ looked for $\overline{v_e} \rightarrow \overline{v_{\mu}}$ oscillations (disappearance)

Standard parametrization of Mixing matrix via 3 Euler rotations

$$\begin{split} U &= \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix} \begin{bmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \end{split}$$

where $c_{12} = \cos \theta_{12}$ and $s_{12} = \sin \theta_{12}$.

Message: leptons and quarks mix in a similar way

BUT with 3 **BIG** questions :

1) Phase δ violates CP and

- 2) so phases α_1, α_2 in Majorana picture
- 3) Matrix unitarity if no sterile neutrino

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & & \\ & & & \\ & & & &$$

Searching of disappearance:

$$\begin{aligned} P(\nu_e \to \nu_e) &= 1 - \sin^2 2\theta_{13} \ S_{23} - c_{13}^4 \sin^2 2\theta_{12} \ S_{12}, \\ P(\nu_\mu \to \nu_\mu) &= 1 - 4c_{13}^2 s_{23}^2 (1 - c_{13}^2 s_{23}^2) S_{23} - c_{23}^4 \sin^2 2\theta_{12} \ \underline{S}_{12} \\ P(\nu_\tau \to \nu_\tau) &= 1 - 4c_{13}^2 c_{23}^2 (1 - c_{13}^2 c_{23}^2) S_{23} - s_{23}^4 \sin^2 2\theta_{12} \ \underline{S}_{12} \end{aligned}$$

 θ_{13} measurements from Reactors suffer from Δm_{23} correlations

What is the pattern of neutrino masses?

But it could look like that

Luca Stanco - Padova

Masses

Mixing

Lepton Mixing is weird

What does all that means ?

Is there any meaning at all ?

(more than those for cabalistes)

e.g. Quark-Lepton Complementarity: $\theta_{12}^{I}+\theta_{12}^{I}\approx\pi/4$ and $\theta_{23}^{I}+\theta_{23}^{I}\approx\pi/4$ $U_{MNS}=U_{bm}U_{CKM}^{I}$ (QLC) or $U_{MNS}=U_{CKM}^{I}U_{bm}$ (QLC) U_{bm} stands for QL symmetry or GUT

Luca Stanco - Padova

nu oscillations - BEYOND 2010

W.Buchmuller at EPS09: Summary talk

Status of the "Standard Models" at this EPS conference:

- Particles: wealth of data, all consistent with the SM
- Astrophysics: no phenomena which are inconsistent with conventional physics
- Cosmology: remarkably precise data, all consistent with cosmological SM

Are there hints for new physics, and if yes,

at which energy scale?

Right-handed neutrinos have been "found"; no exotics have been found

Message: be prepared to the unexpected !

Then what do we have to measure?

- Three angles $(\theta_{12}, \theta_{13}, \theta_{23})$
- Two mass differences ($\Delta m_{12}^2, \Delta m_{23}^2$)
- The sign of the mass difference $\Delta m^2 (\pm \Delta m^2_{23})$
- One CP phase (δ)
- The source of atmospheric oscillations (detect τ appearan.)
- The absolute mass scale
- Are neutrino Dirac or Majorana particles (or both)?
- Are there more sterile neutrinos?

the BIG items can be studied with LBL experiments

Example for 3 flavour Oscillation probability !

There are also "INTERNAL" problems !

The three oscillation signals cannot be reconciled without introducing Beyond Standard Model Physics From WIN09 (Perugia, Oct.09)

MiniBooNE

Neutrino mode result (2007/09)

- Based on 6.46x10²⁰ POT
- Ruled out interpretation of LSND signal as oscillations
- Unexplained excess of events in low-energy region

- MiniBooNE data are themselves not conclusive
 - No evidence for neutrino and/or anti-neutrino oscillations
 - There is an excess for low energy neutrinos that is not there for anti-neutrinos
- A 3+1 model can reconciles all *appearance* data, but not the *disappearance* once (also adding more neutrinos does not help)
- Models with sterile neutrinos and exotic physics have been therefore proposed
- A fact: the experimental situation is confused!
- Can MINOS/OPERA help?

...and wait for τ appearance in OPERA !!!

1998 SK atmospheric neutrino anomaly: deficit of v_{μ} (and not v_{e}) with zenith angle dependence: OSCILLATION !!!

CHOOZ: final flavour not (only) $v_e \dots$

1999 CNGS beam design

2000 DONUT "sees" the v_{τ} in the nuclear emulsions

2000 OPERA proposal

provide an unambiguous evidence for $v_{\mu} \rightarrow v_{\tau}$ oscillation in the region of atmospheric neutrinos by looking for v_{τ} appearance in a pure v_{μ} beam

Luca Stanco - Padova

nu oscillations - BEYOND 2010

(almost) Near future. (almost) Assured.

The present

The MINOS way

- Two detector experiment to reduce systematic errors:
 - Flux, cross-section and detector uncertainties minimised
 - Measure unoscillated v_{μ} spectrum at Near detector
 - extrapolate using MC
 - Compare to measured spectrum at Far detector

What MINOS observes

Far Detector ν_{μ} CC Data

- See strong energy dependent distortion of spectrum
- Energy spectrum fit with the oscillation hypothesis:

$$P(v_{\mu} \rightarrow v_{\tau}) = \sin^2(2\theta) \sin^2\left(\frac{1.27\Delta m^2 L}{E}\right)$$

MINOS result

Allowed Region

Most precise measurement of $|\Delta m^2_{32}|$ performed to date

OPERA expectations

- Presently (assuming 22.5x10¹⁹pot) OPERA expects about 15 detected τ with a background smaller than 1 event
- What happens whether LESS taus' are indeed observed ??

$(\theta_{13};\theta_{14};\theta_{24};\theta_{34})$	$N_{ au}$	background	$(\theta_{13};\theta_{14};\theta_{24};\theta_{34})$	$N_{ au}$	background
$(5^{\circ}; 5^{\circ}; 5^{\circ}; 20^{\circ})$	8.9	1.0	$(10^{\circ}; 5^{\circ}; 5^{\circ}; 20^{\circ})$	8.5	1.0
$(5^{\circ}; 5^{\circ}; 5^{\circ}; 30^{\circ})$	6.9	1.0	$(10^{\circ}; 5^{\circ}; 5^{\circ}; 30^{\circ})$	6.5	1.0
$(5^{\circ}; 5^{\circ}; 10^{\circ}; 20^{\circ})$	8.3	1.0	$(10^{\circ}; 5^{\circ}; 10^{\circ}; 20^{\circ})$	7.9	1.0
$(5^{\circ}; 5^{\circ}; 10^{\circ}; 30^{\circ})$	10.5	1.0	$(10^{\circ}; 5^{\circ}; 10^{\circ}; 30^{\circ})$	10.3	1.0
3 families	15.1	1.0	3 families	14.4	1.0

Example for 3+1 neutrinos (plus 1 sterile)

Table 1: Event rates and expected background for the $\nu_{\mu} \rightarrow \nu_{\tau}$ channel in the OPERA detector, for different values of θ_{14}, θ_{24} and θ_{34} in the (3+1) scheme. The other unknown angle, θ_{13} has been fixed to: $\theta_{13} = 5^{\circ}, 10^{\circ}$. The CP-violating phases are: $\delta_1 = \delta_2 = 0$; $\delta_3 = 90^{\circ}$. As a reference, the expected value in the case of standard three-family oscillation (i.e., for $\theta_{i4} = 0$) is shown for maximal CP-violating phase δ . The rates are computed according to eq. (5.1).

From A.Donini et al., JHEP 0712:013,2007

Similarly for Non-Standard-Interac, M.Bennow et al., Eur.Phys.J.C56:529-536,2008

CNGS 2009

... for tau neutrino CC detection in OPERA

The OPERA way (the principle)

OPERA adopts the ECC concept (Emulsion Cloud Chamber):

arranged in a "BRICK":

- 57 emulsion sets
- 56 Pb layers

plus downstream

Plus 2 external emulsion sets for "interplay" with Electronics Data, arranged in a white plastic box

CS

The completion of the OPERA construction^(*)

OPERA is based on the only proven technology (DONUT) to identify v_{τ} on an event-by-event basis (nucl.emuls.&lead driven by real time detectors). It is celebrated as a major engineering achievement since it brought such technology to an **immense size** (1.25 kton)

Event in OPERA

Event trigger and reconstruction

EnergyHist Event: 9151034867, 31 May 2009, 05:44 (UTC), XZ projection 160 Columns (top view) 120 1 17 -1 18 100 -750 Walls EnergyHist Selected brick Event: 9151034867, 31 May 2009, 05:44 (UTC), YZ projection Brick in cell Empty cell Rows (side view) -34 -750 -700 Walls -600 Brick finding information: Super module 1 Muon track parameters: Mu+ CS y

	BrickId	Wall	Side	Column	Row	Prob	CS x	CS y
brick 1:	1005281	8	1	17	4	0.91	21.6	62.2
brick 2:	1025547	8	1	18	4	0.07	149.6	62.2
brick 3:	1069021	7	1	17	4	0.01	24.8	42.8

Brick identification

Much track parameters: Mut Momentum: 9.051 GeV/c Angle XZ (rad): -0.018+/-0.006 Angle YZ (rad): 0.138+/-0.006

- Select the brick containing the neutrino interaction
 - Reduce the analysis time
 - Minimize the target mass loss

What the microscope CCD sees in one film...

OPERA: tau physics search potential

Full mixing, 5 years run, 4.5×10^{19} pot/year and M_D =1.3 Kton

Efficiency before τ identification: $\varepsilon_{\text{trigger}} \ge \varepsilon_{\text{brick}} \ge \varepsilon_{\text{geom}} \ge \varepsilon_{\text{vertex location}} = 99\% \ge (270\%) \ge 94\% \ge 90\%$

= de seu			Sig		
channels	٤(%)	BR(%)	Δm ²	Δm^2	Background
			=2.5×10 ⁻³ eV ²	$=3.0 \times 10^{-3} \text{ eV}^2$	
$\tau \to \mu$	17.5	17.7	2.9	4.2	0.17
T → e	20.8	17.8	3.5	5.0	0.17
$\tau ightarrow h$	5.8	49.5	3.1	4.4	0.24
$\tau \rightarrow 3h$	6.3	15	0.9	I.3	0.17
ALL	ε×BR=10.6%		10.4	14.9	0.75

Expected backgrounds:

- Charmed particles produced in \mathbf{v}_{μ} CC and NC interaction
- Hadron reinteractions in lead
- Large angle μ scattering: muons produced in ν_{μ} CC events
- π^0 mis-identification

Occur if primary muon is not detected and possible wrong charge measurement of secondary muon. **Muon ID is very crucial issue for the experiment!**

. . .

RUN 2009 expectations			
173 days 48s supercycle 75% efficiency 2.1 ^E 13 pot/extraction			
\rightarrow 3.5 ^E 19 pot \rightarrow 3500 events of nu interactions	M/:th 2008 10 mund		
Efforts needed for improving the bea performance	OPERA be able to confirm tau appearance with a reasonable probability		
RUN 2010 expectations	OR		
(with LHC permit) $\rightarrow 4.5^{E}19 \text{ pot}$	at a not so large probab. to exclude tau appearance!		
\rightarrow 4500 nu interactions in OPERA brid	<mark>cks</mark>		

Conclusions

Neutrinos mass and oscillations new history

(many results in last 10 years but still far from settling them)

Matrix of leptonic mixing clue issue

MNS elements: more measurements, better resolutions... MiniBooNE/MINOS/OPERA challenges:

- 1) collect more statistics
- 2) disantagle the physics measurements !
- 3) find the taus ! Measure θ_{13} (if > 7⁰)...
- 4) confirm the unexpected !

NEXT few years exciting (and unclear) ! FAR future does really exist out of present facilities ?