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The main new ideas in this talk have not been presented or published
elsewhere, but they build upon work presented in earlier papers:
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R. E. Allen, Proceedings of Beyond the Desert 2002; hep-th/0008032.
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In some of this earlier work we suggested the possibility of spin 1/2
bosons, which would certainly be a dramatic prediction for the LHC.
Here we show that the present theory leads more plausibly to standard
supersymmetry with the usual spin 0 sfermions, spin 1/2 gauginos, etc.
The new predictions of the present theory for experiment are thus going
to be more subtle -- but the present theory is still relatively close to real-
world physics, and there are certainly new predictions at sufficiently high
energies and on large enough distance scales.



The present theory demonstrates the robustness of the
predictions of standard supersymmetry, true Higgs bosons,
supersymmetric candidates for dark matter, and GUT
phenomena like neutrinoless double beta decay, and further
strengthens our belief that they should be seen or confirmed
experimentally within the foreseeable future.

Outline of this talk:

e origin of the Lorentzian form ( -,+,+,+) for the metric tensor,
starting with the original Euclidean form.

* origin of standard supersymmetry and Higgs fields
e vanishing of the usual cosmological constant

* successes of the present theory, and work remaining



The present theory starts with a statistical picture, and initially yields a
Euclidean path integral Z involving a Euclidean operator A (x). First we will
show that the path integral can be re-expressed in Lorentzian form. Then we
will find that, in the present theory and at low energy (compared to the Planck
scale), the relevant operators also automatically turn out to have Lorentzian
form.

Consider the Euclidean action for a multicomponent field W:

S = /d% Ul (2) A(z) U ()
The path integral also has the Euclidean form
Z; = /Dxpf DV e

in the case of fermions, with W composed of anticommuting Grassmann vari-
ables, or

Zb = /D(Re \Ijb) D(Im\Ijb) €_Sb

in the case of bosons, with W; composed of ordinary commuting variables.



Since A contains covariant derivatives, let us work in a locally inertial co-
ordinate system and in the temporal gauge A}, = 0, so that the states which

diagonalize the Hermitian operator A (x) have well-defined frequencies w:

U (x) =) bp(w) U, (T)e "

0, Az) O, (7) e~twa’ — a(w,r) ¥, (7) gtwa’

where @ represents all coordinates except the time 2", and r distinguishes the
states for a given w. The basis functions ¥,. (¥’) are normalized such that this is
a unitary transformation, and the Jacobian in the path integral is consequently
equal to unity. Then

S =) bl (w)a(w,r) b (w)
and we can write

Z:Hz(w,r): H z (w,r) - H z(w,r) .

w>0,r w<0,r



Start with bosons, for which

ar) = [ dReb @) [ d(lmb, @) el @)
N _7-‘- :
" afwn

(where the b, and a (w,r) are for the subset of states relevant to the bosons).
Since A is a Euclidean operator, all of the a (w, r) are positive. For w > 0, let

zp (w,r) = z/ d(Reb, (w))/ d(Im b, (w))eia(w,r)[(Rebr(w))%(Imbr(w))Q]
_ ]
- a(w,r)

since [°_dx [~ dy exp (ia (2* +y?)) = 7/ (ia). And for w < 0 let

—’L/ d(Re b, (Cd)) / d(Im b, (Cd)) e—i a(w,r) [(Re by (w))?+(Im br(w))2]

o — 0

2 (w,7)

s

a(w,r)



We therefore have
Ly = H lea (w,r) . H le7 (w,r)
w>0,r w<0,r
or

Zp, = H?b (w, )

w,r

Zp (W, 1) E/ d(Reb, (w))/ d(Im b, (w)) e*9nw)alw,r) [(Re by (w))?+(Im by (w))?]

o0 — 00

since each pair of positive and negative frequencies gives a factor (—i)¢ = 1. This
is the path integral for an arbitrary time interval, so for any physical process
the new expression for Z; will give the same results as the old expression.



For fermions the procedure is essentially the same, except that the integrals
are carried out formally using the rules for Grassmann variables, and we do not
separate out positive and negative frequencies.

We can now transform back to the original fields and write the path integral
as

Z:/D@D@%w

where this form is just schematic for bosons, with D\I!bD\I!]; really meaning
D (ReVy) D (Im W), and where

Sp = / d*z Ul (z) A(z) Oy (x) - / Az (2) A(z) U_ (2)



Mathematical nuances with Lorentzian path integrals are discussed in Peskin
and Schroeder, p. 286. The full Euclidean path integral in the present theory
involves nonlinearities which lead to very complicated asymptotic series. How-
ever, in a simple treatment of the nonlinear effects the conclusion above is not
changed: The Lorentzian and Euclidean path integrals give the same results.
Also, the above treatment is a valid aproximation for low field strengths.

Recall that the operator A still has a Euclidean form. However, in the

AN

present theory, according to (6.16) of IJMP1997 or (3.45) of Beyond2002, A
effectively becomes at low energy (compared to the Planck scale)

A = et oD,
where ej; is the vierbein, with W replaced by v, and
U=Un.

The field v is the original field ¥ transformed to the “frame of reference” of
the vacuum, which in the present theory contains a GUT condensate that is
effectively moving with a “superfluid velocity” corresponding to U. This trans-
formation is the precise generalization of the prescription for giving a Galilean
boost to a field in nonrelativistic quantum mechancs, in order to bring it into a
moving frame of reference.



For bosons we then have

Sy = /d4a;‘ wl (x) ieh oD, (x) Y4 — /d4xzﬂ (x) iebo* D, Y (x)

/d%"@@i (x) 1eh aaﬁu v, (z) — /d‘%e@T (x) iek JO‘ZN?M P_ ()

with B
by =e 2y

Here e = det ey, = (— det gw)l/z, where g, 1s the metric tensor, and

~

D, =0, +iAlt; , D,=D,+e 29,e"?.

(In Beyond2002 this is derived in a Lorentzian picture, and in IJMP1997 it is
derived in a Euclidean picture with €? imaginary, but it is easy to see that the
derivation still works in the present context, with a Euclidean operator and all
the e# real.)



The above form also holds for fermions, except that it is not necessary to
treat positive and negative frequencies separately:

Sy :/d‘lazw;ﬂ (x) ieh oD, (x) vy :/d‘lazeﬂ () iegao‘f)uﬂf () .

This is the conventional form for fermions, described by 2-component Weyl

spinors, but it is highly unconventional for bosons, because a boson described
by 1 would have spin 1/2.

For bosons, however, we can transform from the set 1) of original 2-component
fields to a corresponding set of 1-component complex fields ¢ and F. (Here and
in the following, v means v .)



First, for each w (and in the temporal gauge), go to a representation that
diagonalizes the Hermitian operator io”* Dy

U(r) = Y awsd, (T)e ™"
io% (O +iAlt) 0, (T) = P, (T) .

This has the form B B
—O-kpkws (7) — Psws (7) .

Since o?0F0? = — (O’k)*, and P, and P, are real, there is another @_S with the
opposite eigenvalue:

~0"Pp_, (T) = —Py_, (T) .

We will call the positive eigenvalue Ps; and the negative eigenvalue —P;, and
will include both as a single term in the sums below.



Let us now return to the action for positive frequency states, with 1) repre-
senting ¥ :

5, = / By (z) 10D, T (2)

— Z [az’s (w+ Ps)ay,s +a, _, (w— P) aw7_s] ,

Letting
to-s = (W+P)"? ¢,
aws = (W Ps.)_l/2 § I
we obtain
St = Y [¢5 (WP = P2) bus + FJ Fus]

- / d*z [¢" (x) " DDy () + F' (z) F (2)] .



Here ¢ and F' are positive frequency fields:

6(z) = Y Guaxs (T)eT™

F(z) = ZFw5Xs(7>)€_zwm
' DiDixs (T) = Pxs(7T)

with



For negative frequency states, we have, with E now representing @_,

S_. = —/d‘%@T (z) io" D, (x)

- Z [CLZ,—S (_ ‘w‘ _ Pw,S) Ay, —s T aZ,s (_ |w‘ + PS) aw,s}

so in this case define
o5 = (|0 + P)? s o aw—s=(w+P) " F,, .

Then we again obtain the form

S_ = Z [¢:;,S (w2 — PSQ) ¢w,s + FS’SF(,‘),S}

— [ [¢) @ DuDu (@) + F' (2) F (2)
but in this case ¢ and F' are negative frequency fields:

6(2) = Guaxs (T F(2) =D Fuxs ()

w,S



The total bosonic action, including both positive and negative frequencies,
then still retains exactly this form:

Sp =51 +5_ = /d4a: (o' ()" D, Dy¢ (z) + F' (z) F (z)] .

With the fermionic action left untouched, and after an integration by parts, we
obtain the standard supersymmetric action

S [ e [0 io Dby — 1 Dyt () Duh () + F* () F (2)]

where the fields ¢, F', and ¢ respectively consist of 1-component complex
scalar bosonic fields ¢,, 1-component complex scalar auxiliary fields F),, and
2-component spin 1/2 fermionic fields 1,,.



Reverting back to a general coordinate system, we have

Spp=" [ dwe [G}icto" Db, - 9D, (x) D, (@) + F; () Fy (a)]

with
" —1/2
wp T € / wp
- —1/2
¢p — € / ¢p )
Again, e = detej; = (—det gw)l/Q, where ef] is the vierbein, g,,, = ejjey is the

metric tensor, and

~

D, =D,+e'?9,e'? | D,=0,+iAlt;.

(One can carry through the above treatment in a general coordinate system
to get this expression for Sy, with no essential differences.) The coupling of
matter to gravity is thus very nearly the same as in standard general relativity.



However, if Sy, is written in terms of the original fields ¢, and ¢,, there is
no factor of e. In other words, in the present theory the original action has the

form
S() = / d4£U ZO
whereas in standard physics it has the form
So = / d*xe Ly .

For an £ corrsponding to a vacuum energy density, there is then no coupling to
gravity in the present theory, and the usual cosmological constant vanishes.



On the other hand, there should be a “diamagnetic response” of vacuum
fields to changes in both the gauge fields and vierbein, which results from a
shifting of the energies of the vacuum states when fields are applied, just as the
energies of the electrons in a metal are shifted by the application of a magnetic
field. We posulate that this effect produces contributions to the action which
are respectively consistent with the gauge symmetry and the general coordinate
invariance which the present theory exhibits at low energy. The lowest order
such contributions are, of course, the Maxwell-Yang-Mills and Einstein-Hilbert
actions, plus a relatively weak cosmological constant arising from this same
mechanism:

1 _ ) 1 vo
’CQ — _ZgO QF/u/Fpag'upg
Lo = e+ 51_326 DR .

Here gg is the coupling constant for the fundamental gauge group (e.g.S0O(10)),
A is a constant, and (% = 167G. These terms are analogous to the usual
contributions to the free energy from Landau diamagnetism in a metal.



As pointed out in IJMP1997, the gauge and gravitational curvatures require
that the order parameter contain a superposition of configurations containing
topological defects (without which there could be no curvature). Here we do
not attempt to discuss these defects in detail, but they are analogous to vortex
lines in a superfluid.

The actions for gauginos and gravitinos are postulated to have a similar
origin, as the vacuum responds to these fields.

Particle masses and Yukawa couplings are postulated to arise from super-
symmetry breaking and radiative corrections.



There is clearly a lot of work remaining to be done — including actual pre-
dictions for experiment — but the theory is relatively close to real-world physics,
and the following arise as emergent properties from a fundamental statistical
picture:

e standard physics

e SO(N) fundamental gauge theory

e supersymmetry

e gravitational metric, with the form (—, +, +, +)
e correct coupling of matter fields to gravity

e vanishing of usual cosmological constant

e spacetime and fields

Criticisms and suggestions are welcomed!



